Micro-manipulation using rotational fluid flows induced by remote magnetic micro-manipulators

We present a non-contact manipulation method for micron scale objects using locally induced rotational fluid flows created by groups of untethered magnetic micro-manipulators. The magnetic micro-manipulators are rotated in a viscous fluid by an externally generated magnetic field to create rotational flows, which act to move micro-objects in the flow region. One single spherical micro-manipulator is used to manipulate one object at a time, while an array of micro-manipulators spin in synchrony on a surface patterned with magnetic micro-docks to create reconfigurable fluidic channels for simultaneous transportation of multiple objects. The induced rotational flow field and the resulting hydrodynamic forces on the micro-objects are studied using both finite element solutions and analytical models from previous studies. These results are compared with experiment to determine manipulation characteristics for the complex flows. Due to its untethered and non-contact operation, this micro-manipulation method cou...

[1]  Metin Sitti,et al.  Miniature devices: Voyage of the microrobots , 2009, Nature.

[2]  Stergios I. Roumeliotis,et al.  IEEE International Conference on Intelligent Robots and Systems , 2011, IROS 2011.

[3]  Metin Sitti,et al.  Microscale and nanoscale robotics systems [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[4]  Cheng-Hsien Liu,et al.  A lobster-sniffing inspired actuator for manipulation of micro-objects via controlling local fluid , 2005, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05..

[5]  Nicole Pamme,et al.  Magnetism and microfluidics. , 2006, Lab on a chip.

[6]  Kishan Dholakia,et al.  Three-dimensional arrays of optical bottle beams , 2003 .

[7]  Hakho Lee,et al.  Manipulation of biological cells using a microelectromagnet matrix , 2004 .

[8]  Joel Voldman,et al.  Electroactive hydrodynamic weirs for microparticle manipulation and patterning. , 2009, Applied physics letters.

[9]  Dieter Blaas,et al.  Capillary electrophoresis of biological particles: Viruses, bacteria, and eukaryotic cells , 2004, Electrophoresis.

[10]  David Tabor,et al.  The effect of surface roughness on the adhesion of elastic solids , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[11]  Andrea Prosperetti,et al.  Drag and lift forces on bubbles in a rotating flow , 2007, Journal of Fluid Mechanics.

[12]  M. Sitti,et al.  Multiple magnetic microrobot control using electrostatic anchoring , 2009 .

[13]  Dominic R. Frutiger,et al.  Small, Fast, and Under Control: Wireless Resonant Magnetic Micro-agents , 2010, Int. J. Robotics Res..

[14]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[15]  Antoine Sellier,et al.  A sphere in a second degree polynomial creeping flow parallel to a wall , 2006 .

[16]  Li Zhang,et al.  Selective trapping and manipulation of microscale objects using mobile microvortices. , 2012, Nano letters.

[17]  Metin Sitti,et al.  Two-Dimensional Autonomous Microparticle Manipulation Strategies for Magnetic Microrobots in Fluidic Environments , 2012, IEEE Transactions on Robotics.

[18]  B.R. Donald,et al.  Planar Microassembly by Parallel Actuation of MEMS Microrobots , 2008, Journal of Microelectromechanical Systems.

[19]  Metin Sitti,et al.  Control of Multiple Heterogeneous Magnetic Microrobots in Two Dimensions on Nonspecialized Surfaces , 2012, IEEE Transactions on Robotics.

[20]  泰義 横小路,et al.  IEEE International Conference on Robotics and Automation , 1992 .

[21]  P. Saffman The lift on a small sphere in a slow shear flow , 1965, Journal of Fluid Mechanics.

[22]  D. Grier A revolution in optical manipulation , 2003, Nature.

[23]  Andrea Prosperetti,et al.  Wall effects on a rotating sphere , 2010, Journal of Fluid Mechanics.

[24]  P. Cherukat,et al.  The inertial lift on a rigid sphere in a linear shear flow field near a flat wall , 1994, Journal of Fluid Mechanics.

[25]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[26]  Hiroshi Masuhara,et al.  Trapping and manipulation of a single micro-object in solution with femtosecond laser-induced mechanical force , 2007 .

[27]  Metin Sitti,et al.  Effect of quantity and configuration of attached bacteria on bacterial propulsion of microbeads , 2008 .

[28]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[29]  S. Martel,et al.  Controlled manipulation and actuation of micro-objects with magnetotactic bacteria , 2006 .

[30]  N. Pamme,et al.  Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. , 2006, Lab on a chip.

[31]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[32]  Metin Sitti,et al.  Two-Dimensional Contact and Noncontact Micromanipulation in Liquid Using an Untethered Mobile Magnetic Microrobot , 2009, IEEE Transactions on Robotics.

[33]  Metin Sitti,et al.  Modeling and Experimental Characterization of an Untethered Magnetic Micro-Robot , 2009, Int. J. Robotics Res..

[34]  David T. Leighton,et al.  INERTIAL LIFT ON A MOVING SPHERE IN CONTACT WITH A PLANE WALL IN A SHEAR FLOW , 1995 .

[35]  J. Happel,et al.  Low Reynolds number hydrodynamics: with special applications to particulate media , 1973 .

[36]  Metin Sitti,et al.  Modeling of stochastic motion of bacteria propelled spherical microbeads , 2011 .

[37]  Jie Yan,et al.  Near-field-magnetic-tweezer manipulation of single DNA molecules. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Li Zhang,et al.  Controlled propulsion and cargo transport of rotating nickel nanowires near a patterned solid surface. , 2010, ACS nano.

[39]  Hyunjae Kang,et al.  Development of a piezoelectric polymer-based sensorized microgripper for microassembly and micromanipulation , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[40]  Ming C. Wu,et al.  Massively parallel manipulation of single cells and microparticles using optical images , 2005, Nature.

[41]  M. Chaoui,et al.  Creeping flow around a sphere in a shear flow close to a wall , 2003 .

[42]  B. Behkam,et al.  Bacterial flagella-based propulsion and on/off motion control of microscale objects , 2007 .

[43]  Leslie Y Yeo,et al.  Microfluidic devices for bioapplications. , 2011, Small.

[44]  J. Israelachvili Intermolecular and surface forces , 1985 .