Predicción para control: una panorámica del control de procesos con Retardo

This paper presents an analysis of dead-time compensating controllers for processes exhibiting a dead time. The robustness and performance of several dead-time compensating control structures are analysed and the effect of the predictor on the closed-loop is studied. A unified approach is used considering ideas from “Model Pedictive Control” (MPC) and “Dead-time Compensators” (DTC). The main papers in the area are revised and the relationships between MPC and DTC are shown. The paper shows that the predictors designed to produce optimal open-loop predictions are not optimal when operating in closed loop. Furthermore, structures based on the Smith predictor offer more robust controllers and similar nominal performance even when the process exactly matches the situation required by optimal controllers. A new concept "Prediccion para Control" is introduced where predictors should be designed as an integral part of the controller in order to produce better closed-loop response.

[1]  I-Lung Chien,et al.  Simple control method for integrating processes with long deadtime , 2002 .

[2]  E.F. Camacho,et al.  A unified approach to design dead-time compensators for stable and integrative processes with dead-time , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[3]  C. Mohtadi,et al.  Properties of generalized predictive control , 1987, Autom..

[4]  Tore Hägglund,et al.  An Industrial Dead-Time Compensating PI Controller , 1996 .

[5]  Kenji Ozaki Extended Horizon Adaptive Control Method for Raw Material Mixing System in Cement Plant. , 1999 .

[6]  Leang S. Shieh,et al.  Discretisation of two degree-of-freedom controller and system with state, input and output delays , 2000 .

[7]  A. Bhaya,et al.  Controlling plants with delay , 1984, The 23rd IEEE Conference on Decision and Control.

[8]  K. K. Tan,et al.  Robust Smith-predictor controller for uncertain delay systems , 1996 .

[9]  Ljubi sa S. Draganovi,et al.  A NEW SMITH PREDICTOR FOR CONTROLLING A PROCESS WITH AN INTEGRATOR AND LONG DEAD-TIME : DESIGN AND TUNING , 2022 .

[10]  Aniruddha Datta,et al.  Adaptive internal model control: Design and stability analysis , 1996, Autom..

[11]  G. Stein,et al.  Multivariable feedback design: Concepts for a classical/modern synthesis , 1981 .

[12]  P. Ansay,et al.  Model uncertainties in GPC: A systematic two-step design , 1997, 1997 European Control Conference (ECC).

[13]  Babatunde A. Ogunnaike,et al.  Advanced multivariable control of a pilot‐plant distillation column , 1983 .

[14]  Julio E. Normey-Rico,et al.  Improving the robustness of dead-time compensating PI controllers , 1997 .

[15]  Zalman J. Palmor,et al.  Stability properties of Smith dead-time compensator controllers , 1980 .

[16]  Manfred Morari,et al.  Design of resilient processing plants. VI: The effect of right-half-plane zeros on dynamic resilience , 1985 .

[17]  J. Serrano,et al.  Uncertainty treatment in GPC: Design of T polynomial , 1997, 1997 European Control Conference (ECC).

[18]  Zalman J. Palmor Robust digital dead time compensator controller for a class of stable systems , 1986, Autom..

[19]  Gérard Favier,et al.  A review of k-step-ahead predictors , 1988, Autom..

[20]  Zalman J. Palmor,et al.  Properties of optimal stochastic control systems with dead-time , 1982, Autom..

[21]  R. Shinnar,et al.  Design of Sampled Data Controllers , 1979 .

[22]  Julio E. Normey-Rico,et al.  2DOF discrete dead-time compensators for stable and integrative processes with dead-time , 2005 .

[23]  M. Matausek,et al.  A modified Smith predictor for controlling a process with an integrator and long dead-time , 1996, IEEE Trans. Autom. Control..

[24]  Qing-Chang Zhong,et al.  Control of integral processes with dead time.3. Deadbeat disturbance response , 2003, IEEE Trans. Autom. Control..

[25]  Manfred Morari,et al.  Design of resilient processing plants—V: The effect of deadtime on dynamic resilience , 1985 .

[26]  David W. Clarke,et al.  Generalized Predictive Control - Part II Extensions and interpretations , 1987, Autom..

[27]  John F. MacGregor,et al.  Constrained minimum variance controllers: internal model structure and robustness properties , 1987 .

[28]  Masami Ito,et al.  A process-model control for linear systems with delay , 1981 .

[29]  David Clarke,et al.  Self-tuning control , 1979 .

[30]  W. H. Ray,et al.  High‐Performance multivariable control strategies for systems having time delays , 1986 .

[31]  Michel Gevers,et al.  Connecting Identification and Robust Control: A New Challenge , 1992 .

[32]  Zalman J. Palmor,et al.  On the design and properties of multivariable dead time compensators , 1983, Autom..

[33]  Qing-Chang Zhong,et al.  Control of Integral Processes with Dead Time Part II: Quantitative Analysis , 2002 .

[34]  Eduardo F. Camacho,et al.  Robust tuning of dead-time compensators for processes with an integrator and long dead-time , 1999, IEEE Trans. Autom. Control..

[35]  Wei Xing Zheng,et al.  A double two-degree-of-freedom control scheme for improved control of unstable delay processes , 2005 .

[36]  J. E. Normey-Rico,et al.  Smith predictor and modifications: A comparative study , 1999, 1999 European Control Conference (ECC).

[37]  Tao Liu,et al.  New modified Smith predictor scheme for integrating and unstable processes with time delay , 2005 .

[38]  Zalman J. Palmor,et al.  Robustness properties of sampled-data systems with dead time compensators , 1990, Autom..

[39]  Eduardo F. Camacho,et al.  Neural network MBPC for mobile robot path tracking , 1994 .

[40]  Cheng-Liang Chen,et al.  A modified Smith predictor with an approximate inverse of dead time , 1990 .

[41]  Ibrahim Kaya,et al.  Obtaining Controller Parameters for a New PI-PD Smith Predictor Using Autotuning , 2003 .

[42]  Tae Woong Yoon,et al.  Observer design in receding-horizon predictive control , 1995 .

[43]  Z. J. Palmor,et al.  Improved dead-time compensator controllers , 1985 .

[44]  Riccardo Scattolini,et al.  Easy tuning of smith predictor in presence of delay uncertainty , 1993, Autom..

[45]  Chang-Chieh Hang,et al.  A modified Smith predictor for a process with an integrator and long dead time , 2003 .