Predicción para control: una panorámica del control de procesos con Retardo
暂无分享,去创建一个
[1] I-Lung Chien,et al. Simple control method for integrating processes with long deadtime , 2002 .
[2] E.F. Camacho,et al. A unified approach to design dead-time compensators for stable and integrative processes with dead-time , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).
[3] C. Mohtadi,et al. Properties of generalized predictive control , 1987, Autom..
[4] Tore Hägglund,et al. An Industrial Dead-Time Compensating PI Controller , 1996 .
[5] Kenji Ozaki. Extended Horizon Adaptive Control Method for Raw Material Mixing System in Cement Plant. , 1999 .
[6] Leang S. Shieh,et al. Discretisation of two degree-of-freedom controller and system with state, input and output delays , 2000 .
[7] A. Bhaya,et al. Controlling plants with delay , 1984, The 23rd IEEE Conference on Decision and Control.
[8] K. K. Tan,et al. Robust Smith-predictor controller for uncertain delay systems , 1996 .
[9] Ljubi sa S. Draganovi,et al. A NEW SMITH PREDICTOR FOR CONTROLLING A PROCESS WITH AN INTEGRATOR AND LONG DEAD-TIME : DESIGN AND TUNING , 2022 .
[10] Aniruddha Datta,et al. Adaptive internal model control: Design and stability analysis , 1996, Autom..
[11] G. Stein,et al. Multivariable feedback design: Concepts for a classical/modern synthesis , 1981 .
[12] P. Ansay,et al. Model uncertainties in GPC: A systematic two-step design , 1997, 1997 European Control Conference (ECC).
[13] Babatunde A. Ogunnaike,et al. Advanced multivariable control of a pilot‐plant distillation column , 1983 .
[14] Julio E. Normey-Rico,et al. Improving the robustness of dead-time compensating PI controllers , 1997 .
[15] Zalman J. Palmor,et al. Stability properties of Smith dead-time compensator controllers , 1980 .
[16] Manfred Morari,et al. Design of resilient processing plants. VI: The effect of right-half-plane zeros on dynamic resilience , 1985 .
[17] J. Serrano,et al. Uncertainty treatment in GPC: Design of T polynomial , 1997, 1997 European Control Conference (ECC).
[18] Zalman J. Palmor. Robust digital dead time compensator controller for a class of stable systems , 1986, Autom..
[19] Gérard Favier,et al. A review of k-step-ahead predictors , 1988, Autom..
[20] Zalman J. Palmor,et al. Properties of optimal stochastic control systems with dead-time , 1982, Autom..
[21] R. Shinnar,et al. Design of Sampled Data Controllers , 1979 .
[22] Julio E. Normey-Rico,et al. 2DOF discrete dead-time compensators for stable and integrative processes with dead-time , 2005 .
[23] M. Matausek,et al. A modified Smith predictor for controlling a process with an integrator and long dead-time , 1996, IEEE Trans. Autom. Control..
[24] Qing-Chang Zhong,et al. Control of integral processes with dead time.3. Deadbeat disturbance response , 2003, IEEE Trans. Autom. Control..
[25] Manfred Morari,et al. Design of resilient processing plants—V: The effect of deadtime on dynamic resilience , 1985 .
[26] David W. Clarke,et al. Generalized Predictive Control - Part II Extensions and interpretations , 1987, Autom..
[27] John F. MacGregor,et al. Constrained minimum variance controllers: internal model structure and robustness properties , 1987 .
[28] Masami Ito,et al. A process-model control for linear systems with delay , 1981 .
[29] David Clarke,et al. Self-tuning control , 1979 .
[30] W. H. Ray,et al. High‐Performance multivariable control strategies for systems having time delays , 1986 .
[31] Michel Gevers,et al. Connecting Identification and Robust Control: A New Challenge , 1992 .
[32] Zalman J. Palmor,et al. On the design and properties of multivariable dead time compensators , 1983, Autom..
[33] Qing-Chang Zhong,et al. Control of Integral Processes with Dead Time Part II: Quantitative Analysis , 2002 .
[34] Eduardo F. Camacho,et al. Robust tuning of dead-time compensators for processes with an integrator and long dead-time , 1999, IEEE Trans. Autom. Control..
[35] Wei Xing Zheng,et al. A double two-degree-of-freedom control scheme for improved control of unstable delay processes , 2005 .
[36] J. E. Normey-Rico,et al. Smith predictor and modifications: A comparative study , 1999, 1999 European Control Conference (ECC).
[37] Tao Liu,et al. New modified Smith predictor scheme for integrating and unstable processes with time delay , 2005 .
[38] Zalman J. Palmor,et al. Robustness properties of sampled-data systems with dead time compensators , 1990, Autom..
[39] Eduardo F. Camacho,et al. Neural network MBPC for mobile robot path tracking , 1994 .
[40] Cheng-Liang Chen,et al. A modified Smith predictor with an approximate inverse of dead time , 1990 .
[41] Ibrahim Kaya,et al. Obtaining Controller Parameters for a New PI-PD Smith Predictor Using Autotuning , 2003 .
[42] Tae Woong Yoon,et al. Observer design in receding-horizon predictive control , 1995 .
[43] Z. J. Palmor,et al. Improved dead-time compensator controllers , 1985 .
[44] Riccardo Scattolini,et al. Easy tuning of smith predictor in presence of delay uncertainty , 1993, Autom..
[45] Chang-Chieh Hang,et al. A modified Smith predictor for a process with an integrator and long dead time , 2003 .