Fundamentals of biomechanics in tissue engineering of bone.

The objective of this review is to provide basic information pertaining to biomechanical aspects of bone as they relate to tissue engineering. The review is written for the general tissue engineering reader, who may not have a biomechanical engineering background. To this end, biomechanical characteristics and properties of normal and repair cortical and cancellous bone are presented. Also, this chapter intends to describe basic structure-function relationships of these two types of bone. Special emphasis is placed on salient classical and modern testing methods, with both material and structural properties described.

[1]  P. Spanne,et al.  In vivo animal models of body composition in aging. , 1993, The Journal of nutrition.

[2]  S. Goldstein,et al.  The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. , 1990, Journal of biomechanics.

[3]  Wilson C. Hayes,et al.  Basic Orthopaedic Biomechanics , 1995 .

[4]  R Van Audekercke,et al.  The mechanical characteristics of cancellous bone at the upper femoral region. , 1983, Journal of biomechanics.

[5]  M M Panjabi,et al.  Correlations of radiographic analysis of healing fractures with strength: A statistical analysis of experimental osteotomies , 1985, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[6]  M. Wood,et al.  A biomechanical study of the effects of growth hormone in experimental fracture healing. , 1980, The Journal of bone and joint surgery. British volume.

[7]  D T Davy,et al.  Fate of vascularized and nonvascularized autografts. , 1985, Clinical orthopaedics and related research.

[8]  Cato T Laurencin,et al.  Tissue engineered microsphere-based matrices for bone repair: design and evaluation. , 2002, Biomaterials.

[9]  A Simkin,et al.  The mechanical testing of bone in bending. , 1973, Journal of biomechanics.

[10]  C. M. Agrawal,et al.  Effect of Collagen Denaturation on the Toughness of Bone , 2000, Clinical orthopaedics and related research.

[11]  James H. McElhaney,et al.  Dynamic response of biological materials. , 1965 .

[12]  D D Moyle,et al.  Work to fracture of canine femoral bone. , 1978, Journal of biomechanics.

[13]  D B Burr,et al.  Alterations to the en bloc basic fuchsin staining protocol for the demonstration of microdamage produced in vivo. , 1995, Bone.

[14]  W. Bonfield,et al.  Fracture mechanics of bone--the effects of density, specimen thickness and crack velocity on longitudinal fracture. , 1984, Journal of biomechanics.

[15]  F. Linde,et al.  The effect of constraint on the mechanical behaviour of trabecular bone specimens. , 1989, Journal of biomechanics.

[16]  P Slätis,et al.  The healing of experimental fractures by compression osteosynthesis. I. Torsional strength. , 1979, Acta orthopaedica Scandinavica.

[17]  A. Ascenzi,et al.  The tensile properties of single osteons , 1967, The Anatomical record.

[18]  L. S. Matthews,et al.  The mechanical properties of human tibial trabecular bone as a function of metaphyseal location. , 1983, Journal of biomechanics.

[19]  T A Einhorn,et al.  24R,25-dihydroxyvitamin D3: an essential vitamin D3 metabolite for both normal bone integrity and healing of tibial fracture in chicks. , 1997, Endocrinology.

[20]  William Bonfield,et al.  Deformation and Fracture of Bone , 1966 .

[21]  D T Davy,et al.  Comparison of damage accumulation measures in human cortical bone. , 1997, Journal of biomechanics.

[22]  Kjeld Søballe,et al.  Transforming growth factor-β enhances fracture healing in rabbit tibiae , 1993 .

[23]  C H Turner,et al.  Basic biomechanical measurements of bone: a tutorial. , 1993, Bone.

[24]  S A Goldstein,et al.  Type I collagen mutation alters the strength and fatigue behavior of Mov13 cortical tissue. , 1997, Journal of biomechanics.

[25]  M. Lind,et al.  Growth factor stimulation of bone healing. Effects on osteoblasts, osteomies, and implants fixation. , 1998, Acta orthopaedica Scandinavica. Supplementum.

[26]  T. Andreassen,et al.  Increased mechanical strength of healing rat tibial fractures treated with biosynthetic human growth hormone. , 1990, Bone.

[27]  S. Lang,et al.  Ultrasonic method for measuring elastic coefficients of bone and results on fresh and dried bovine bones. , 1970, IEEE transactions on bio-medical engineering.

[28]  R M Rose,et al.  The distribution and anisotropy of the stiffness of cancellous bone in the human patella. , 1975, Journal of biomechanics.

[29]  M. Bouxsein,et al.  Tibial ultrasound velocity measured in situ predicts the material properties of tibial cortical bone. , 1997, Bone.

[30]  J A McGeough,et al.  Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure. , 1993, The Journal of bone and joint surgery. American volume.

[31]  V. Rosen,et al.  The healing of segmental bone defects, induced by recombinant human bone morphogenetic protein (rhBMP-2). A radiographic, histological, and biomechanical study in rats. , 1992, The Journal of bone and joint surgery. American volume.

[32]  J B Finlay,et al.  Indentation stiffness of the cancellous bone in the distal human tibia. , 1985, Clinical orthopaedics and related research.

[33]  N. Sasaki,et al.  Orientation of bone mineral and its role in the anisotropic mechanical properties of bone--transverse anisotropy. , 1989, Journal of biomechanics.

[34]  F. Linde,et al.  The underestimation of Young's modulus in compressive testing of cancellous bone specimens. , 1991, Journal of biomechanics.

[35]  C. M. Agrawal,et al.  Short-term effects of bisphosphonates on the biomechanical properties of canine bone. , 1999, Journal of biomedical materials research.

[36]  S A Goldstein,et al.  Type‐I collagen mutation compromises the post‐yield behavior of Mov13 long bone , 1996, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[37]  R. B. Ashman,et al.  Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. , 1993, Journal of biomechanics.

[38]  S Jepsen,et al.  Recombinant human osteogenic protein-1 induces dentin formation: an experimental study in miniature swine. , 1997, Journal of endodontics.

[39]  C. Slemenda,et al.  Pathogenesis of osteoporosis. , 1995, Bone.

[40]  W C Van Buskirk,et al.  A continuous wave technique for the measurement of the elastic properties of cortical bone. , 1984, Journal of biomechanics.

[41]  W C Hayes,et al.  In vivo histologic and biomechanical characterization of a biodegradable particulate composite bone cement. , 1989, Journal of biomedical materials research.

[42]  C. M. Agrawal,et al.  Fracture toughness of bone using a compact sandwich specimen: effects of sampling sites and crack orientations. , 1996, Journal of biomedical materials research.

[43]  M M Panjabi,et al.  The four biomechanical stages of fracture repair. , 1977, The Journal of bone and joint surgery. American volume.

[44]  V. A. Gibson,et al.  In vitro fatigue behavior of the equine third metacarpus: Remodeling and microcrack damage analysis , 1996, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[45]  J. Mcelhaney,et al.  Dynamic response of bone and muscle tissue. , 1966, Journal of applied physiology.

[46]  P. Waris,et al.  Torsional strength of cortical and cancellous bone grafts after rigid plate fixation. , 1981, Acta orthopaedica Scandinavica.

[47]  M. Schaffler,et al.  Examination of compact bone microdamage using back-scattered electron microscopy. , 1994, Bone.

[48]  D Vashishth,et al.  Effect of groove on bone fracture toughness. , 1991, Journal of biomechanics.

[49]  C. M. Agrawal,et al.  Contribution of Collagen to Bone Mechanical Properties , 1998, Proceedings of the 17th Southern Biomedical Engineering Conference.

[50]  Steven A. Goldstein,et al.  Current concepts in tissue engineering: Cell, matrices, and genes , 2001 .

[51]  W C Hayes,et al.  Fracture mechanics parameters for compact bone--effects of density and specimen thickness. , 1977, Journal of biomechanics.

[52]  A H Burstein,et al.  The ultimate properties of bone tissue: the effects of yielding. , 1972, Journal of biomechanics.

[53]  S A Goldstein,et al.  A comparison of the fatigue behavior of human trabecular and cortical bone tissue. , 1992, Journal of biomechanics.

[54]  L. Claes,et al.  Influence of size and stability of the osteotomy gap on the success of fracture healing , 1997, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[55]  D M Robertson,et al.  Fracture toughness, critical crack length and plastic zone size in bone. , 1978, Journal of biomechanics.

[56]  Niels Christian Jensen,et al.  Topographical distribution of trabecular bone strength in the human os calcanei. , 1991, Journal of biomechanics.

[57]  W. Bonfield,et al.  Fracture toughness of compact bone. , 1976, Journal of biomechanics.

[58]  C. R. Howlett,et al.  Effect of platelet-derived growth factor on tibial osteotomies in rabbits. , 1994, Bone.

[59]  P. Antich,et al.  Bone Elasticity and Ultrasound Velocity Are Affected by Subtle Changes in the Organic Matrix , 1998, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[60]  N. Poppen,et al.  Normal and abnormal motion of the shoulder. , 1976, The Journal of bone and joint surgery. American volume.

[61]  W. T. Dempster,et al.  Compact bone as a non-isotropic material. , 1952, The American journal of anatomy.

[62]  J Healer,et al.  Experimental determination of the mechanical properties of bone. , 1968, Aerospace medicine.

[63]  K. Gautvik,et al.  Calcitonin producing tumour. Effects on fracture repair and normal bone in rats. , 1983, Acta orthopaedica Scandinavica.

[64]  F. Linde,et al.  Tensile and compressive properties of cancellous bone. , 1991, Journal of biomechanics.

[65]  J. Hollinger,et al.  The integrated processes of hard tissue regeneration with special emphasis on fracture healing. , 1996, Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics.

[66]  D A Smith,et al.  Relations between age, mineral density and mechanical properties of human femoral compacta. , 1976, Acta orthopaedica Scandinavica.

[67]  W. Abendschein,et al.  Ultrasonics and selected physical properties of bone. , 1970, Clinical orthopaedics and related research.

[68]  William Bonfield,et al.  Orientation and Age-Related Dependence of the Fracture Toughness of Cortical Bone , 1985 .

[69]  W. Bonfield,et al.  Orientation dependence of the fracture mechanics of cortical bone. , 1989, Journal of biomechanics.

[70]  T D Brown,et al.  The development of a computational stress analysis of the femoral head. Mapping tensile, compressive, and shear stress for the varus and valgus positions. , 1978, The Journal of bone and joint surgery. American volume.

[71]  C. Hirsch,et al.  Factors affecting the determination of the physical properties of femoral cortical bone. , 1966, Acta orthopaedica Scandinavica.

[72]  W. Hayes,et al.  The compressive behavior of bone as a two-phase porous structure. , 1977, The Journal of bone and joint surgery. American volume.

[73]  D B Burr,et al.  Effect of Disc Lesion on Microdamage Accumulation in Lumbar Vertebrae Under Cyclic Compression Loading , 1995, Clinical orthopaedics and related research.

[74]  J. Currey,et al.  Prediction of mechanical properties of the human calcaneus by broadband ultrasonic attenuation. , 1996, Bone.

[75]  P Zioupos,et al.  The role of collagen in the declining mechanical properties of aging human cortical bone. , 1999, Journal of biomedical materials research.

[76]  J. Wark,et al.  Models for the pathogenesis of stress fractures in athletes. , 1996, British journal of sports medicine.

[77]  T. Keaveny,et al.  Systematic and random errors in compression testing of trabecular bone , 1997, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[78]  D P Fyhrie,et al.  In vivo trabecular microcracks in human vertebral bone. , 1996, Bone.

[79]  D Vashishth,et al.  Fracture toughness of human bone under tension. , 1995, Journal of biomechanics.

[80]  E. Wang,et al.  Healing segmental femoral defects in sheep using recombinant human bone morphogenetic protein. , 1993, Clinical orthopaedics and related research.

[81]  J. Katz,et al.  Ultrasonic wave propagation in human cortical bone--II. Measurements of elastic properties and microhardness. , 1976, Journal of biomechanics.

[82]  Shepanek La The effect of endocrine substances (ACTH and growth hormone) on experimental fractures. , 1953 .

[83]  E. Sedlin,et al.  A rheologic model for cortical bone. A study of the physical properties of human femoral samples. , 1965, Acta orthopaedica Scandinavica. Supplementum.

[84]  A. Ascenzi,et al.  The compressive properties of single osteons , 1968, The Anatomical record.

[85]  W C Hayes,et al.  Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. , 1996, Biomaterials.

[86]  F. G. Evans,et al.  Strength of biological materials , 1970 .

[87]  Lutz Claes,et al.  Local tissue properties in bone healing: Influence of size and stability of the osteotomy gap , 1998, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[88]  E Y Chao,et al.  A study of fracture callus material properties: Relationship to the torsional strength of bone , 1990, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.