Convergence of filtered spherical harmonic equations for radiation transport

We analyze the global convergence properties of the filtered spherical harmonic (FPN ) equations for radiation transport. The well-known spherical harmonic (PN ) equations are a spectral method (in angle) for the radiation transport equation and are known to suffer from Gibbs phenomena around discontinuities. The filtered equations include additional terms to address this issue that are derived via a spectral filtering procedure. We show explicitly how the global L2 convergence rate (in space and angle) of the spectral method to the solution of the transport equation depends on the smoothness of the solution (in angle only) and on the order of the filter. The results are confirmed by numerical experiments. Numerical tests have been implemented in MATLAB and are available online.

[1]  Thomas A. Brunner,et al.  Forms of Approximate Radiation Transport , 2002 .

[2]  M. Frank,et al.  A deterministic partial differential equation model for dose calculation in electron radiotherapy , 2009, Physics in medicine and biology.

[3]  Cory D. Hauck,et al.  High-Order Entropy-Based Closures for Linear Transport in Slab Geometry II: A Computational Study of the Optimization Problem , 2012, SIAM J. Sci. Comput..

[4]  T. J. Bridges Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves. By D. SERRE (translated by I. N. Sneddon). Cambridge University Press, 1999. 263 pp. ISBN 0 521 58233 4. £40. , 1999 .

[5]  Christophe Berthon,et al.  Numerical Methods for Balance Laws with Space Dependent Flux: Application to Radiotherapy Dose Calculation , 2011 .

[6]  Christian Schmeiser,et al.  Convergence of Moment Methods for Linear Kinetic Equations , 1998 .

[7]  Hervé Vandeven,et al.  Family of spectral filters for discontinuous problems , 1991 .

[8]  I. N. Sneddon,et al.  Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves , 1999 .

[9]  G. C. Pomraning The Equations of Radiation Hydrodynamics , 2005 .

[10]  B. Dubroca,et al.  Etude théorique et numérique d'une hiérarchie de modèles aux moments pour le transfert radiatif , 1999 .

[11]  Ryan G. McClarren,et al.  Robust and accurate filtered spherical harmonics expansions for radiative transfer , 2010, J. Comput. Phys..

[12]  Dianne P. O'Leary,et al.  Adaptive change of basis in entropy-based moment closures for linear kinetic equations , 2013, J. Comput. Phys..

[13]  James Paul Holloway,et al.  Two-dimensional time dependent Riemann solvers for neutron transport , 2005 .

[14]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[15]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[16]  G. N. Minerbo,et al.  Maximum entropy Eddington factors , 1978 .

[17]  Robert Michael Kirby,et al.  Filtering in Legendre spectral methods , 2008, Math. Comput..

[18]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[19]  E. Lewis,et al.  Computational Methods of Neutron Transport , 1993 .

[20]  C. Groth,et al.  Towards physically realizable and hyperbolic moment closures for kinetic theory , 2009 .

[21]  C Regan,et al.  Effect of the plasma-generated magnetic field on relativistic electron transport. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Ryan G. McClarren,et al.  Positive P N Closures. , 2010 .

[23]  B. Guo,et al.  Spectral Methods and Their Applications , 1998 .

[24]  P. Huynh,et al.  HERACLES: a three-dimensional radiation hydrodynamics code , 2007 .

[25]  Cory D. Hauck,et al.  A Comparison of Moment Closures for Linear Kinetic Transport Equations: The Line Source Benchmark , 2013 .

[26]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[27]  Robert McGraw,et al.  Description of Aerosol Dynamics by the Quadrature Method of Moments , 1997 .

[28]  G. C. Pomraning,et al.  Linear Transport Theory , 1967 .

[29]  K. Atkinson,et al.  Spherical Harmonics and Approximations on the Unit Sphere: An Introduction , 2012 .

[30]  François Golse,et al.  Diffusion approximation and entropy-based moment closure for kinetic equations , 2005 .

[31]  Cory D. Hauck,et al.  Radiation transport modeling using extended quadrature method of moments , 2013, J. Comput. Phys..

[32]  Sabine Fenstermacher,et al.  Equations Of Radiation Hydrodynamics , 2016 .

[33]  Luciano Rezzolla,et al.  A new spherical harmonics scheme for multi-dimensional radiation transport I. Static matter configurations , 2012, J. Comput. Phys..

[34]  B A Fraass,et al.  Electron dose calculations using the Method of Moments. , 1997, Medical physics.

[35]  Benjamin Seibold,et al.  StaRMAP---A Second Order Staggered Grid Method for Spherical Harmonics Moment Equations of Radiative Transfer , 2012, ACM Trans. Math. Softw..

[36]  Daniele Marchisio,et al.  Computational Models for Polydisperse Particulate and Multiphase Systems , 2013 .

[37]  Ryan G. McClarren,et al.  Simulating Radiative Transfer with Filtered Spherical Harmonics , 2010 .