A MAGNETOHYDRODYNAMIC MODEL OF THE M87 JET. I. SUPERLUMINAL KNOT EJECTIONS FROM HST-1 AS TRAILS OF QUAD RELATIVISTIC MHD SHOCKS

This is the first in a series of papers that introduces a new paradigm for understanding the jet in M87: a collimated relativistic flow in which strong magnetic fields play a dominant dynamical role. Here wefocus on the flow downstream of HST-1 - an essentially stationary flaring feature that ejects trails of superluminal components. We propose that these components are quad relativistic magnetohydrodynamic shock fronts (forward/reverse fast and slow modes) in a narrow jet with a helically twisted magnetic structure. And we demonstrate the properties of such shocks with simple one-dimensional numerical simulations. Quasi-periodic ejections of similar component trails may be responsible for the M87 jet substructures observed further downstream on 100 - 1,000 pc scales. This new paradigm requires the assimilation of some new concepts into the astrophysical jet community, particularly the behavior of slow/fast-mode waves/shocks and of current-driven helical kink instabilities. However, the prospects of these ideas applying to a large number of other jet systems may make this worth the effort.

[1]  M. Inoue,et al.  Multifrequency Polarimetry of the NRAO 140 Jet: Possible Detection of a Helical Magnetic Field and Constraints on Its Pitch Angle , 2008, 0806.4233.

[2]  K. Tsinganos,et al.  SYNTHETIC SYNCHROTRON EMISSION MAPS FROM MHD MODELS FOR THE JET OF M87 , 2009, 0901.2634.

[3]  Zhi-qiang Shen,et al.  A Modified Synchrotron Model for Knots in the M87 Jet , 2007, 0708.3422.

[4]  John A. Biretta,et al.  Formation of the radio jet in M87 at 100 Schwarzschild radii from the central black hole , 1999, Nature.

[5]  Karl Gebhardt,et al.  THE BLACK HOLE MASS, STELLAR MASS-TO-LIGHT RATIO, AND DARK HALO IN M87 , 2009, 0906.1492.

[6]  D. E. Harris,et al.  APJ, ACCEPTED Preprint typeset using LATEX style emulateapj v. 6/22/04 THE OUTBURST OF HST-1 IN THE M87 JET , 2005 .

[7]  M. Ostrowski,et al.  Dynamics and high-energy emission of the flaring HST-1 knot in the M 87 jet , 2006 .

[8]  Arons,et al.  Structure of relativistic magnetosonic shocks in electron-positron plasmas. , 1988, Physical review letters.

[9]  G. Vaucouleurs,et al.  A photometric analysis of the jet in Messier 87. , 1979 .

[10]  K. Meisenheimer,et al.  The jet of M 87 , 1993 .

[11]  André Lichnerowicz,et al.  Relativistic Hydrodynamics And Magnetohydrodynamics , 1967 .

[12]  M. Lister,et al.  The Inner Jet of the Radio Galaxy M87 , 2007, 0708.2695.

[13]  William Junor,et al.  High-Frequency VLBI Imaging of the Jet Base of M87 , 2007 .

[14]  N. E. Kassim,et al.  M87 at 90 Centimeters: A Different Picture , 2000, astro-ph/0006150.

[15]  D. Fabricant,et al.  X-ray measurements of the mass of M 87. , 1980 .

[16]  L. Sironi,et al.  PARTICLE ACCELERATION IN RELATIVISTIC MAGNETIZED COLLISIONLESS PAIR SHOCKS: DEPENDENCE OF SHOCK ACCELERATION ON MAGNETIC OBLIQUITY , 2009, 0901.2578.

[17]  R. Blandford,et al.  Numerical simulations of magnetized jets , 1989 .

[18]  D. Meier,et al.  Magnetohydrodynamic production of relativistic jets. , 2001, Science.

[19]  Poynting-flux-dominated Jets in Decreasing Density Atmospheres , 2004, astro-ph/0406405.

[20]  Jeremiah P. Ostriker,et al.  Particle Acceleration by Astrophysical Shocks , 1978 .

[21]  Stability properties of magnetic tower jets , 2006, astro-ph/0609007.

[22]  K. Johnston,et al.  VLBI observations of the nucleus and jet of M87 , 1982 .

[23]  William B. Sparks,et al.  HUBBLE SPACE TELESCOPE Observations of Superluminal Motion in the M87 Jet , 1999 .

[24]  A. Bell The acceleration of cosmic rays in shock fronts – I , 1978 .

[25]  M. Ostrowski,et al.  On the Magnetic Field in the Kiloparsec-Scale Jet of Radio Galaxy M87 , 2005 .

[26]  D. E. Harris,et al.  Superluminal Radio Features in the M87 Jet and the Site of Flaring TeV Gamma-Ray Emission , 2007, 0705.2448.

[27]  William B. Sparks,et al.  The Jet of M87 at Tenth-Arcsecond Resolution: Optical, Ultraviolet, and Radio Observations , 1996 .

[28]  A. Wilson,et al.  CHANDRA X-RAY IMAGING AND SPECTROSCOPY OF THE M87 JET AND NUCLEUS , 2001, astro-ph/0112097.

[29]  Y. Uchida,et al.  Production of wiggled structure of AGN radio jets in the sweeping magnetic twist mechanism , 2001 .

[30]  J. Tonry Surface Brightness Fluctuations: A Bridge from M31 to the Hubble Constant , 1991 .

[31]  Eric S. Perlman,et al.  The X-Ray Emissions from the M87 Jet: Diagnostics and Physical Interpretation , 2005, astro-ph/0503024.

[32]  Frazer N. Owen,et al.  High-Resolution, High Dynamic Range VLA Images of the M87 Jet at 2 Centimeters , 1989 .

[33]  P. Hardee,et al.  VLA observations of the M87 jet at 6 and 2 centimeters , 1980 .

[34]  William B. Sparks,et al.  Optical and Radio Polarimetry of the M87 Jet at 02 Resolution , 1999, astro-ph/9901176.

[35]  P. Hardee,et al.  Observations of the M87 jet at 15 GHz with 0.12 SEC resolution , 1983 .

[36]  Bram van Leer,et al.  On the Relation Between the Upwind-Differencing Schemes of Godunov, Engquist–Osher and Roe , 1984 .

[37]  William B. Sparks,et al.  Month-Timescale Optical Variability in the M87 Jet , 2003, astro-ph/0311161.

[38]  J. Biretta,et al.  Detection of Proper Motions in the M87 Jet , 1995 .

[39]  Hongyan Zhou,et al.  Determination of the intrinsic velocity field in the M87 jet , 2009, 0904.1857.

[40]  A. Marconi,et al.  The Supermassive Black Hole of M87 and the Kinematics of Its Associated Gaseous Disk , 1997 .

[41]  A. Wilson,et al.  Chandra Imaging of the X-Ray Core of the Virgo Cluster , 2002, astro-ph/0202504.

[42]  S. Allen,et al.  The relation between accretion rate and jet power in X-ray luminous elliptical galaxies , 2006, astro-ph/0602549.

[43]  R. Laing A model for the magnetic-field structure in extended radio sources , 1980 .

[44]  M. Wise,et al.  Accepted for publication in the Astrophysical Journal A High Resolution X-ray Image of the Jet in M 87 , 2001 .

[45]  A. B. Langdon,et al.  Relativistic, perpendicular shocks in electron-positron plasmas , 1992 .

[46]  A. Levinson,et al.  RECOLLIMATION AND RADIATIVE FOCUSING OF RELATIVISTIC JETS: APPLICATIONS TO BLAZARS AND M87 , 2008, 0810.0562.