Ventricular asynchrony predicts a better outcome in patients with chronic heart failure receiving cardiac resynchronization therapy.

OBJECTIVES The aim of this study was to evaluate whether the clinical benefit of cardiac resynchronization therapy (CRT) can be prospectively predicted by means of the baseline evaluation of left ventricular asynchrony. BACKGROUND The reverse remodeling associated with CRT is more evident in patients with severe heart failure (HF) and left bundle branch block (LBBB) who have left ventricular asynchrony. METHODS Baseline left ventricular asynchrony was assessed in 60 patients with severe HF and LBBB by calculating the electrocardiographic duration of QRS and the echocardiographic septal-to-posterior wall motion delay (SPWMD). Left ventricular size and left ventricular ejection fraction (LVEF), mitral valve regurgitation, and functional capacity were also evaluated. The progression toward HF (defined as a worsening clinical condition leading to a sustained increase in conventional therapies, hospitalization, cardiac transplantation, and death) was assessed during follow-up, as were the changes in LVEF after six months. RESULTS During the median follow-up of 14 months, 16 patients experienced HF progression. Univariate analysis showed that ischemic cardiomyopathy, changes in the QRS duration after implantation, and SPWMD significantly correlated with events. At multivariate analysis, a long SPWMD remained significantly associated with a reduced risk of HF progression (hazard ratio: 0.91; 95% confidence interval: 0.83 to 0.99; p <0.05). An improvement in LVEF was observed in 79% of the patients with a baseline SPWMD of > or =130 ms and in 9% of those with an SPWMD of <130 ms (p <0.0001). CONCLUSIONS Baseline SPWMD is a strong predictor of long-term clinical improvement after CRT in patients with severe HF and LBBB.

[1]  Stefan Sack,et al.  Long-term clinical effect of hemodynamically optimized cardiac resynchronization therapy in patients with heart failure and ventricular conduction delay. , 2002, Journal of the American College of Cardiology.

[2]  Michel Haissaguerre,et al.  Comparison of characteristics in responders versus nonresponders with biventricular pacing for drug-resistant congestive heart failure. , 2002, The American journal of cardiology.

[3]  Massimo Santini,et al.  Doppler myocardial imaging to evaluate the effectiveness of pacing sites in patients receiving biventricular pacing. , 2002, Journal of the American College of Cardiology.

[4]  Paolo Rizzon,et al.  Clinical Application of Echocardiographic Findings Cardiac Resynchronization Therapy Tailored by Echocardiographic Evaluation of Ventricular Asynchrony , 2016 .

[5]  Chu-Pak Lau,et al.  Predictors of left ventricular reverse remodeling after cardiac resynchronization therapy for heart failure secondary to idiopathic dilated or ischemic cardiomyopathy. , 2003, The American journal of cardiology.

[6]  Peter Søgaard,et al.  Tissue Doppler imaging predicts improved systolic performance and reversed left ventricular remodeling during long-term cardiac resynchronization therapy. , 2002, Journal of the American College of Cardiology.

[7]  J. A. Bowers,et al.  Carvedilol inhibits clinical progression in patients with mild symptoms of heart failure. US Carvedilol Heart Failure Study Group. , 1996, Circulation.

[8]  J. Daubert,et al.  Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. , 2001, The New England journal of medicine.

[9]  Andrew P. Kramer,et al.  Predictors of systolic augmentation from left ventricular preexcitation in patients with dilated cardiomyopathy and intraventricular conduction delay. , 2000, Circulation.

[10]  Angelo Auricchio,et al.  Echocardiographic quantification of left ventricular asynchrony predicts an acute hemodynamic benefit of cardiac resynchronization therapy. , 2002, Journal of the American College of Cardiology.

[11]  B. Kristensen,et al.  Sequential Versus Simultaneous Biventricular Resynchronization for Severe Heart Failure: Evaluation by Tissue Doppler Imaging , 2002, Circulation.

[12]  J. Daubert,et al.  Electrocardiographic predictive factors of long-term clinical improvement with multisite biventricular pacing in advanced heart failure. , 1999, The American journal of cardiology.

[13]  B. Pitt,et al.  Eplerenone, a Selective Aldosterone Blocker, in Patients with Left Ventricular Dysfunction after Myocardial Infarction , 2003 .

[14]  J. Cohn,et al.  Prognostic Significance of Serial Changes in Left Ventricular Ejection Fraction in Patients With Congestive Heart Failure , 1993, Circulation.

[15]  B. Pitt,et al.  EPLERENONE POST-ACUTE MYOCARDIAL INFARCTION HEART FAILURE EFFICACY AND SURVIVAL STUDY INVESTIGATORS. EPLERENONE, A SELECTIVE ALDOSTERONE BLOCKER, IN PATIENTS WITH LEFT VENTRICULAR DYSFUNCTION AFTER MYOCARDIAL INFARCTION , 2003 .

[16]  E. Foster,et al.  Effects of Long-Term Biventricular Stimulation for Resynchronization on Echocardiographic Measures of Remodeling , 2002, Circulation.