A Radar Electromagnetic Environment Sensing Method Based on Cyclic Spectral Algorithm

In this paper, a radar electromagnetic environment sensing method based on the cyclic spectral algorithm is discussed, which can be used to acquire the spectrum information of radar signals and distinguish them. This paper uses the second-order cyclostationary detection algorithm based on the spectral correlation function (SCF) to obtain the cyclic spectral. The estimation of SCF is and the estimation precision by calculating deviation and variance of SCF are displayed. In the simulation, a scenario of radar electromagnetic environment is presented by transmitting Linear Frequency Modulation signals (LFM) and Amplitude Modulation signals (AM). Simulation results indicate that the cyclic spectral algorithm can not only sense the spectrum information of signals but also judge the type of signal. Therefore, the bandwidth of the interference information can be detected. The simulation results show that this method is highly preferred for radar electromagnetic environment sensing even under low signal-to-noise ratio (SNR) circumstance.

[1]  Gianmarco Baldini,et al.  Experimentally detecting IEEE 802.11n Wi-Fi based on cyclostationarity features for ultra-wide band cognitive radios , 2009, 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications.

[2]  Guanding Yu,et al.  Performance of Cyclostationary Features Based Spectrum Sensing Method in a Multiple Antenna Cognitive Radio System , 2009, 2009 IEEE Wireless Communications and Networking Conference.

[3]  Said Nader-Esfahani,et al.  Compressive Wideband Spectrum Sensing in Cognitive Radio Systems Based on Cyclostationary Feature Detection , 2015, 2015 9th International Conference on Next Generation Mobile Applications, Services and Technologies.

[4]  Xiangyang Wang,et al.  Joint Spectrum Sensing in Distributed MIMO Systems , 2011, 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring).

[5]  Prince Semba Yawada,et al.  Cyclostationary Detection Based on Non-cooperative spectrum sensing in cognitive radio network , 2016, 2016 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER).

[6]  Jitendra K. Tugnait,et al.  On Cyclostationarity Based Spectrum Sensing Under Uncertain Gaussian Noise , 2013, IEEE Transactions on Signal Processing.