Spectral statistics for random Schr\"odinger operators in the localized regime

We study various statistics related to the eigenvalues and eigenfunctions of random Hamiltonians in the localized regime. Consider a random Hamiltonian at an energy $E$ in the localized phase. Assume the density of states function is not too flat near $E$. Restrict it to some large cube $\Lambda$. Consider now $I_\Lambda$, a small energy interval centered at $E$ that asymptotically contains infintely many eigenvalues when the volume of the cube $\Lambda$ grows to infinity. We prove that, with probability one in the large volume limit, the eigenvalues of the random Hamiltonian restricted to the cube inside the interval are given by independent identically distributed random variables, up to an error of size an arbitrary power of the volume of the cube. As a consequence, we derive * uniform Poisson behavior of the locally unfolded eigenvalues, * a.s. Poisson behavior of the joint distibutions of the unfolded energies and unfolded localization centers in a large range of scales. * the distribution of the unfolded level spacings, locally and globally, * the distribution of the unfolded localization centers, locally and globally.

[1]  Wei-Min Wang Localization and universality of Poisson statistics for the multidimensional Anderson model at weak disorder , 2001 .

[2]  Martin Janssen STATISTICS AND SCALING IN DISORDERED MESOSCOPIC ELECTRON SYSTEMS , 1998 .

[3]  R. Killip,et al.  Eigenfunction Statistics in the Localized Anderson Model , 2007 .

[4]  New Characterizations of the Region of Complete Localization for Random Schrödinger Operators , 2005, math-ph/0503017.

[5]  M. Reed,et al.  Methods of Modern Mathematical Physics. 2. Fourier Analysis, Self-adjointness , 1975 .

[6]  M. Aizenman,et al.  Localization at large disorder and at extreme energies: An elementary derivations , 1993 .

[7]  R. Durrett Probability: Theory and Examples , 1993 .

[8]  F. Klopp Inverse tunneling estimates and applications to the study of spectral statistics of random operators on the real line , 2011, 1101.0900.

[9]  N. Minami Theory of point processes and some basic notions in energy level statistics , 2007 .

[10]  Werner Kirsch,et al.  The Integrated Density of States for Random Schroedinger Operators , 2006 .

[11]  A. Klein,et al.  A characterization of the Anderson metal-insulator transport transition , 2004 .

[12]  J. Combes,et al.  Poisson Statistics for Eigenvalues of Continuum Random Schr , 2008, 0807.0455.

[13]  Jean,et al.  Henri Poincare,为科学服务的一生 , 2006 .

[14]  A. Klein,et al.  Bootstrap Multiscale Analysis and Localization¶in Random Media , 2001 .

[15]  P. Hislop,et al.  The Integrated Density of States for Some Random Operators with Nonsign Definite Potentials , 2002 .

[16]  B. M. Fulk MATH , 1992 .

[17]  J. Combes,et al.  Generalized Eigenvalue-Counting Estimates for the Anderson Model , 2008, 0804.3202.

[18]  Werner Kirsch,et al.  An Invitation to Random Schr¨ odinger operators , 2007 .

[19]  L. Weiss The Stochastic Convergence of a Function of Sample Successive Differences , 1955 .

[20]  A. Mirlin,et al.  Statistics of energy levels and eigenfunctions in disordered systems , 2000 .

[21]  M. Aizenman LOCALIZATION AT WEAK DISORDER: SOME ELEMENTARY BOUNDS , 1994 .

[22]  A. Klein,et al.  Smoothness of the density of states in the Anderson model at high disorder , 1988 .

[23]  Wilhelm Schlag,et al.  Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday , 2007 .

[24]  B. Simon,et al.  Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank one perturbations, and localization , 1996 .

[25]  S. Albeverio,et al.  Rank one perturbations , 2000 .

[26]  Manning Marable,et al.  A discussion , 2000 .

[27]  Editors , 1986, Brain Research Bulletin.

[28]  Evgenij Kritchevski Poisson Statistics of Eigenvalues in the Hierarchical Anderson Model , 2007, 0710.2582.

[29]  F. Götze Disordered Systems: Random Schrödinger Operators and Random Matrices , 2009 .

[30]  G. Pólya,et al.  Problems and theorems in analysis , 1983 .

[31]  Fr'ed'eric Klopp,et al.  Enhanced Wegner and Minami Estimates and Eigenvalue Statistics of Random Anderson Models at Spectral Edges , 2011, Annales Henri Poincaré.

[32]  G. M. Graf,et al.  A Remark on the Estimate of a Determinant by Minami , 2007 .

[33]  Correlation Estimates in the Anderson Model , 2007, math-ph/0703058.

[34]  D. Thouless,et al.  Electrons in disordered systems and the theory of localization , 1974 .

[35]  Alexander Figotin,et al.  Spectra of Random and Almost-Periodic Operators , 1991 .

[36]  F. Klopp Decorrelation Estimates for the Eigenlevels of the Discrete Anderson Model in the Localized Regime , 2010, 1004.1261.

[37]  Nariyuki Minami,et al.  Local fluctuation of the spectrum of a multidimensional Anderson tight binding model , 1996 .

[38]  T. V. Ramakrishnan,et al.  Disordered electronic systems , 1985 .

[39]  Peter Stollmann,et al.  Caught by disorder , 2001 .

[40]  M. Aizenman,et al.  Communications in Mathematical Physics Finite-Volume Fractional-Moment Criteria for Anderson Localization , 2001 .

[41]  Fr'ed'eric Klopp,et al.  Spectral statistics for the discrete Anderson model in the localized regime (Spectra of Random Operators and Related Topics) , 2010, 1006.4427.

[42]  F. Germinet,et al.  Dynamical Localization for Discrete and Continuous Random Schrr Odinger Operators , 1997 .

[43]  P. Hislop,et al.  Localization for Schrodinger operators with random vector potentials , 2007, 0708.1774.

[44]  F. Klopp Localization for some continuous random Schrödinger operators , 1995 .

[45]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[46]  Michael Aizenman,et al.  Moment analysis for localization in random Schrödinger operators , 2003, math-ph/0308023.