Trypsin-encoding PRSS1-PRSS2 variations influence the risk of asparaginase-associated pancreatitis in children with acute lymphoblastic leukemia: a Ponte di Legno toxicity working group report

gene, which encodes for trypsinogen, and are known risk variants for alcohol-associated and sporadic pancreatitis in adults. Intra-pancreatic trypsinogen cleavage to proteolytic trypsin induces autodigestion and pancreatitis. In conclusion, this study finds a shared genetic predisposition between asparagi-nase-associated pancreatitis and non-asparaginase-associated pancreatitis, and targeting the trypsinogen activation pathway may enable identification of effective interventions for asparaginase-associ-ated pancreatitis. increased calcium (Ca ++ ) efflux from the endoplasmic reticulum. This in turn leads to opening of Ca ++ release activated (CRAC) channels, further increasing intracellular calcium levels, reducing ATP levels and allowing activation of inactive trypsinogen to active trypsin.

[1]  Mitchell J. Machiela,et al.  LDassoc: an online tool for interactively exploring genome-wide association study results and prioritizing variants for functional investigation , 2018, Bioinform..

[2]  Charles M. Perou,et al.  Asparagine bioavailability governs metastasis in a model of breast cancer , 2018, Nature.

[3]  R. Houlston,et al.  Genome-wide association studies of cancer: current insights and future perspectives , 2017, Nature Reviews Cancer.

[4]  N. Pemmaraju,et al.  Questions on asparaginase-associated pancreatitis. , 2017, The Lancet. Oncology.

[5]  A. Baruchel,et al.  Asparaginase-associated pancreatitis in childhood acute lymphoblastic leukaemia: an observational Ponte di Legno Toxicity Working Group study. , 2017, The Lancet. Oncology.

[6]  A. Peters,et al.  Genome-wide association study identifies inversion in the CTRB1-CTRB2 locus to modify risk for alcoholic and non-alcoholic chronic pancreatitis , 2017, Gut.

[7]  K. Schmiegelow,et al.  Non-infectious chemotherapy-associated acute toxicities during childhood acute lymphoblastic leukemia therapy , 2017, F1000Research.

[8]  K. Schmiegelow,et al.  Asparaginase-associated pancreatitis: a study on phenotype and genotype in the NOPHO ALL2008 protocol , 2017, Leukemia.

[9]  D. Whitcomb,et al.  Insights into the genetic risk factors for the development of pancreatic disease , 2017, Therapeutic advances in gastroenterology.

[10]  Cheng Cheng,et al.  Clinical and Genetic Risk Factors for Acute Pancreatitis in Patients With Acute Lymphoblastic Leukemia. , 2016, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[11]  S. Bhaskar,et al.  Association Analysis of PRSS1-PRSS2 and CLDN2-MORC4 Variants in Nonalcoholic Chronic Pancreatitis Using Tropical Calcific Pancreatitis as Model , 2016, Pancreas.

[12]  O. Petersen,et al.  Calcium and adenosine triphosphate control of cellular pathology: asparaginase-induced pancreatitis elicited via protease-activated receptor 2 , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[13]  L. Silverman,et al.  Consensus definitions of 14 severe acute toxic effects for childhood lymphoblastic leukaemia treatment: a Delphi consensus. , 2016, The Lancet. Oncology.

[14]  Daniel R. Zerbino,et al.  Ensembl 2016 , 2015, Nucleic Acids Res..

[15]  E. Génin,et al.  Identification of a functional PRSS1 promoter variant in linkage disequilibrium with the chronic pancreatitis-protecting rs10273639 , 2015, Gut.

[16]  A. Masamune,et al.  Common variants at PRSS1–PRSS2 and CLDN2–MORC4 loci associate with chronic pancreatitis in Japan , 2015, Gut.

[17]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[18]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[19]  Robert C. Green,et al.  Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis , 2012, Nature Genetics.

[20]  K. Schmiegelow,et al.  Asparaginase‐associated pancreatitis in children , 2012, British journal of haematology.

[21]  Eurie L. Hong,et al.  Annotation of functional variation in personal genomes using RegulomeDB , 2012, Genome research.

[22]  A. Morris,et al.  Data quality control in genetic case-control association studies , 2010, Nature Protocols.

[23]  Michael Boehnke,et al.  LocusZoom: regional visualization of genome-wide association scan results , 2010, Bioinform..

[24]  D. Neuberg,et al.  Erwinia asparaginase after allergy to E. coli asparaginase in children with acute lymphoblastic leukemia , 2010, Pediatric blood & cancer.

[25]  D. Neuberg,et al.  Long-term results of Dana-Farber Cancer Institute ALL Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1985–2000) , 2009, Leukemia.

[26]  John P. A. Ioannidis,et al.  Validating, augmenting and refining genome-wide association signals , 2009, Nature Reviews Genetics.

[27]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[28]  W. Kamps,et al.  Long-term results of a randomized trial on extended use of high dose L-asparaginase for standard risk childhood acute lymphoblastic leukemia. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[29]  D. Labuda,et al.  Dynamic allele-specific oligonucleotide hybridization on solid support. , 2004, Analytical biochemistry.

[30]  R. Gelber,et al.  Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. , 2001, Blood.

[31]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..

[32]  D. Labuda,et al.  Rapid detection of CYP1A1, CYP2D6, and NAT variants by multiplex polymerase chain reaction and allele-specific oligonucleotide assay. , 1999, Analytical biochemistry.

[33]  H. Müller,et al.  Use of L-asparaginase in childhood ALL. , 1998, Critical reviews in oncology/hematology.

[34]  D. Lancet,et al.  GeneCards: integrating information about genes, proteins and diseases. , 1997, Trends in genetics : TIG.

[35]  M. Gorry,et al.  Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene , 1996, Nature Genetics.

[36]  栄三 垣下,et al.  L-asparaginase 療法に関する考察 , 1972 .