Neuro-fuzzy inference system for ultrasonic multifeature tissue characterization for prostate diagnostics
暂无分享,去创建一个
H. Ermert | A. Pesavento | U. Scheipers | S. Philippou | T. Senge | M. Garcia-Schurmann | A. Lorenz | K. Kuhne | H.J. Sommerfeld
[1] M. Cloostermans,et al. A Beam Corrected Estimation of the Frequency Dependent Attenuation of Biological Tissues from Backscattered Ultrasound , 1983 .
[2] H. Ermert,et al. Comparison of different Neuro-Fuzzy classification systems for the detection of prostate cancer in ultrasonic images , 1997, 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118).
[3] T. Senge,et al. ULTRASCHALL-GEWEBECHARAKTERISIERUNG FÜR DIE PROSTATADIAGNOSTIK , 2009 .
[4] E J Feleppa,et al. Spectrum-Analysis and Neural Networks for Imaging to Detect and Treat Prostate Cancer , 2001, Ultrasonic imaging.
[5] H. Ermert,et al. Tissue-characterization of the prostate using radio frequency ultrasonic signals , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[6] H. Ermert,et al. Ultrasonic multifeature tissue characterization for the early detection of prostate cancer , 2001, 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.01CH37263).
[7] R. L. Romijn,et al. Ultrasound attenuation and texture analysis of diffuse liver disease: methods and preliminary results. , 1991, Physics in medicine and biology.
[8] O Basset,et al. Texture analysis of ultrasonic images of the prostate by means of co-occurrence matrices. , 1993, Ultrasonic imaging.
[9] Donald H. Foley. Considerations of sample and feature size , 1972, IEEE Trans. Inf. Theory.