We demonstrate the decoy-state quantum key distribution ov er 200 km with photon polarization through optical fiber, by usi ng superconducting single photon detector with a repetition rate of 320 Mega Hz and a dark count rate of lower than 1 Hz. Since we have used the pola rization coding, the synchronization pulses can be run in a low freque ncy. The final key rate is 14.1 Hz. The experiment lasts for 3089 seconds wit h 43555 total final bits. © 2009 Optical Society of America OCIS codes:(270.0270) Quantum optics; (060.0060) Fiber optics and opt ical communications; (060.5565) Quantum communications. References and links 1. C. H. Bennett and G. Brassard, “Quantum cryptography: pub lic key distribution and coin tossing,” in Proceedings of the IEEE International Conferenceon Computers, Systems and Signal Processing, (Bangalore, India, 1984), pp. 175–179. 2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum c ryptography”, Rev. Mod. Phys. 74, 145 (2002). 3. M. Dusek, N. Lütkenhaus, and M. Hendrych, in Progress in Optics VVVX, edited by E. Wolf (Elsevier, 2006). 4. X.-B. Wang, T. Hiroshima, A. Tomita, and M. Hayashi, “Quan tum information with Gaussian states”, Phys. Rep. 448, 1 (2007) 5. H. Inamori, N. Lütkenhaus, D. Mayers, “Unconditional se curity of practical quantum key distribution”, Eur. Phy. J. D41, 599 (2007), which appeared in the arXiv as quant-ph/010701 7. 6. D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “ Security of quantum key distribution with imperfect devices”, Quantum Inf. Comput. 4, 325 (2004). 7. V. Scarani and R. Renner, “Quantum Cryptography with Fini te Resources: Unconditional Security Bound for Discrete-Variable Protocols with One-Way Postprocessing ”, Phys. Rev. Lett.100, 200501 (2008) and also in 3rd Workshop on Theory of Quantum Computation, Communication, and Cryptography (TQC 2008), JAN 30-FEB 01, 2008 Univ. Tokyo, Tokyo, Japan. 8. Raymond Y.Q. Cai and V. Scarani, “Finite-key analysis for practical implementations of quantum key distribution”, New J. Phys. 11, 045024 (2009). 9. B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum crypto graphy with coherent states”, Phys. Rev. A 51, 1863 (1995); H. P. Yuen, “Quantum amplifiers, quantum duplicator s and quantum cryptography”, Quantum Semiclass. Opt.8, 939 (1996). 10. G. Brassard, N. Lütkenhaus, T. Mor, and B.C. Sanders, “L imitations on Practical Quantum Cryptography”, Phys. Rev. Lett.85, 1330 (2000); N. Lütkenhaus, “Security against individua l attacks for realistic quantum key distribution”, Phys. Rev. A61, 052304 (2000); N. Lütkenhaus and M. Jahma, “Quantum key di stribution with realistic states: photon-number statistics in the photon-number spl itting attack”, New J. Phys. 4, 44 (2002). 11. W.-Y. Hwang, “Quantum key distribution with high loss: t oward global secure communication”, Phys. Rev. Lett. 91, 057901 (2003). 12. X.-B. Wang, “Beating the photon-number-splitting atta ck in practical quantum cryptography”, Phys. Rev. Lett. 94, 230503 (2005); X.-B. Wang, “Decoy-state protocol for quan t m cryptography with four different intensities of coherent light”, Phys. Rev. A72, 012322 (2005). 13. H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key dist ribution”, Phys. Rev. Lett. 94, 230504 (2005); X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for qu antum key distribution”, Phys. Rev. A 72, 012326 (2005). 14. J.W. Harrington J.M Ettinger, R.J. Hughes, J.E. Nordhol t, “Enhancing practical security of quantum key distribution with a few decoy states”, quant-ph/0503002. 15. X.-B. Wang, “Decoy-state quantum key distribution with large random errors of light intensity”, Phys. Rev. A 75, 052301 (2007) 16. X.-B. Wang, C.-Z. Peng and J.-W. Pan, “Simple protocol fo r secure decoy-state quantum key distribution with a loosely controlled source”, Appl. Phys. Lett. 90, 031110 (2007) 17. X.-B. Wang, C.-Z. Peng, J. Zhang, L. Yang and J.-W. Pan, “G eneral theory of decoy-state quantum cryptography with source errors”, Phys. Rev. A 77, 042311 (2008); X.-B. Wang, L. Yang, C.-Z. Peng and J.-W. Pan , “Decoystate quantum key distribution with both source errors and s tatistical fluctuations”, New. J. Phys. 11, 075006 (2009). 18. Y. Zhao, B. Qi, and H.-K. Lo, “Quantum key distribution wi th an unknown and untrusted source”, Phys. Rev. A 77, 052327 (2008). 19. W. Mauerer and C. Silberhorn, “Quantum key distribution with passive decoy state selection”, Phys. Rev. A 75, 050305(R) (2007); Y. Adachi, T. Yamamoto, M. Koashi, and N. I moto, “Simple and Efficient Quantum Key Distribution with Parametric Down-Conversion”, Phys. Rev .L tt. 99, 180503 (2008). 20. T. Hirikiri and T. Kobayashi, “Decoy state quantum key di stribution with a photon number resolved heralded single photon source”, Phys. Rev. A 73, 032331 (2006); Q. Wang, X.-B. Wang, G.-C. Guo, “Practical d ecoy-state method in quantum key distribution with a heralded single-p hoton source”, Phys. Rev. A 75, 012312 (2007). 21. M. Hayashi, “General theory for decoy-state quantum key distribution with an arbitrary number of intensities”, New J. Phys. 9, 284 (2007). 22. R. Ursinet al., “Entanglement-based quantum communication over 144 km”, Nat. Phys.3, 481 (2007). 23. V. Scarani, A. Acin, G. Ribordy, and N. Gisin, “Quantum Cr yptography Protocols Robust against Photon Number Splitting Attacks for Weak Laser Pulse Implementations”, P hys. Rev. Lett.92, 057901 (2004); C. Branciard, N. Gisin, B. Kraus, and V. Scarani, “Security of two quantum cry ptography protocols using the same four qubit states”, Phys. Rev. A72, 032301 (2005). 24. M. Koashi, “Unconditional Security of Coherent-State Q uantum Key Distribution with a Strong Phase-Reference Pulse”, Phys. Rev. Lett. 93, 120501(2004); K. Tamaki, N. Lükenhaus, M. Loashi, J. Batu w ntudawe, “Unconditional security of the Bennett 1992 quantum key-distr ibu ion scheme with strong reference pulse”, quant-ph/0607082. 25. D. Rosenberget al., “Long-Distance Decoy-State Quantum Key Distribution in O ptical Fiber”, Phys. Rev. Lett. 98, 010503 (2007). 26. C.-Z. Penget al., “Experimental Long-Distance Decoy-State Quantum Key Dis tribution Based on Polarization Encoding”, Phys. Rev. Lett. 98, 010505 (2007). 27. T. Schmitt-Manderbach et al., “Experimental Demonstration of Free-Space Decoy-State Q uantum Key Distribution over 144 km”, Phys. Rev. Lett. 98, 010504 (2007). 28. Z.-L. Yuan, A. W. Sharpe, and A. J. Shields, “Uncondition ally secure one-way quantum key distribution using decoy pulses”, Appl. Phys. Lett. 90, 011118 (2007); A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Shar pe, and A. J. Shields, “Gigahertz decoy quantum key distribution wi th 1 Mbit/s secure key rate”, Opt. Exp. 16, 18790 (2008). 29. A. Tanakaet al., “Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization”, Opt. Exp. 16, 11354 (2008). 30. D. Rosenberget al., Quantum Electronics and Laser Science Conference (QELS) B altimore, Maryland May 6, 2007. 31. D. Rosenberget al., “Practical long-distance quantum key distribution syste m using decoy levels”, New J. Phys. 11, 045009 (2009). 32. D. Stuckiet al., “High rate, long-distance quantum key distribution over 2 50 km of ultra low loss fibres”, New J. Phys.11, 075003 (2009). 33. H. Takesueet al., “Quantum key distribution over a 40-dB channel loss using s uperconducting single-photon detectors”, Nat. Photonics 1, 343-348 (2007). 34. T.-Y. Chenet al., “Field test of a practical secure communication network wi th decoy-state quantum cryptography”, Opt. Exp.17, 6450 (2009). 35. J. Chenet al., “Stable quantum key distribution with active polarizatio n control based on time-division multiplexing”, New J. Phys. 11, 065004 (2009). 36. Q. Wanget al., “Experimental Decoy-State Quantum Key Distribution with a Sub-Poissionian Heralded SinglePhoton Source”, Phys. Rev. Lett. 100, 090501 (2008). 37. Z. Q. Yinet al., “Experimental Decoy State Quantum Key Distribution Over 1 20 km Fibre”, Chin. Phys. Lett. 25, 3547 (2008). 38. Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Experimental Quantum Key Distribution with Decoy States”, Phys. Rev. Lett.96, 070502 (2006); Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, in Proceedings of IEEE International Symposium on Information Theory, Seattle, 2 006, pp. 2094–2098 (IEEE, New York). 39. G. Wu, J. Chen, Y. Li, L.-L. Xu, and H.-P. Zeng, “Preventin g eavesdropping with bright reference pulses for a practical quantum key distribution”, Phys. Rev. A 74, 062323(2006).
[1]
Honcho Kawaguchi-shi Satima Jst.
Decoy-state quantum key distribution with large random errors of light intensity
,
2007
.
[2]
Masato Koashi,et al.
Simple and efficient quantum key distribution with parametric down-conversion.
,
2007,
Physical review letters.
[3]
Renato Renner,et al.
Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing.
,
2007,
Physical review letters.
[4]
C. G. Peterson,et al.
Long-distance decoy-state quantum key distribution in optical fiber.
,
2006,
Physical review letters.
[5]
Gilles Brassard,et al.
Quantum Cryptography
,
2005,
Encyclopedia of Cryptography and Security.
[6]
Horace P. Yuen,et al.
Quantum amplifiers, quantum duplicators and quantum cryptography
,
1996
.
[7]
Takayoshi Kobayashi,et al.
Decoy state quantum key distribution with a photon number resolved heralded single photon source
,
2006
.
[8]
Jian-Wei Pan,et al.
General theory of decoy-state quantum cryptography with source errors
,
2006,
quant-ph/0612121.
[9]
Yi Zhao,et al.
Quantum key distribution with an unknown and untrusted source
,
2008,
0802.2725.
[10]
John Preskill,et al.
Security of quantum key distribution with imperfect devices
,
2002,
International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[11]
N. Lutkenhaus,et al.
Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack
,
2001,
quant-ph/0112147.
[12]
H. Inamori,et al.
Unconditional security of practical quantum key distribution
,
2007
.
[13]
Nicolas Gisin,et al.
Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations.
,
2004,
Physical review letters.
[14]
James F. Dynes,et al.
Unconditionally secure one-way quantum key distribution using decoy pulses
,
2007,
QELS 2007.
[15]
Cheng-Zhi Peng,et al.
Simple protocol for secure decoy-state quantum key distribution with a loosely controlled source
,
2007
.
[16]
C. Silberhorn,et al.
Quantum key distribution with passive decoy state selection
,
2007
.
[17]
Won-Young Hwang.
Quantum key distribution with high loss: toward global secure communication.
,
2003,
Physical review letters.
[18]
J. Dynes,et al.
Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate.
,
2008,
Optics express.
[19]
Valerio Scarani,et al.
Finite-key analysis for practical implementations of quantum key distribution
,
2008,
0811.2628.
[20]
V. Scarani,et al.
Security of two quantum cryptography protocols using the same four qubit states (18 pages)
,
2005,
quant-ph/0505035.
[21]
M. Hayashi,et al.
Quantum information with Gaussian states
,
2007,
0801.4604.
[22]
H. Lo,et al.
Practical Decoy State for Quantum Key Distribution
,
2005,
quant-ph/0503005.