Adaptive cardiac arrhythmia control: what are the prospects?

The field of nonlinear dynamics has made important contributions towards a mechanistic understanding of cardiac arrhythmias. In recent years, many of these advancements have been in the area of controlling cardiac electrophysiological dynamics. Initial results in the control of temporal arrhythmia dynamics have been promising. However, more recent studies suggest that extending such methods to the control of realistic spatiotemporal dynamics, as would be required to control lethal cardiac arrhythmias, may be difficult. Here we discuss the current state of the art and the prospects for future progress in this area.

[1]  Guanrong Chen,et al.  FEEDBACK CONTROL OF A QUADRATIC MAP MODEL OF CARDIAC CHAOS , 1996 .

[2]  Peter Hunter,et al.  Theory of heart , 1991 .

[3]  K Hall,et al.  Restricted feedback control of one-dimensional maps. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  M R Gold,et al.  A comparison of T-wave alternans, signal averaged electrocardiography and programmed ventricular stimulation for arrhythmia risk stratification. , 2000, Journal of the American College of Cardiology.

[5]  Ditto,et al.  Experimental control of chaos. , 1990, Physical review letters.

[6]  D. Rosenbaum,et al.  Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. , 1999, Circulation.

[7]  Eberhard Bodenschatz,et al.  Spatiotemporal Transition to Conduction Block in Canine Ventricle , 2002, Circulation research.

[8]  Daniel J. Gauthier,et al.  Comment on ``Dynamic Control of Cardiac Alternans'' , 1997 .

[9]  A Garfinkel,et al.  Controlling cardiac chaos. , 1992, Science.

[10]  Flavio H. Fenton,et al.  SPATIOTEMPORAL CONTROL OF WAVE INSTABILITIES IN CARDIAC TISSUE , 1999 .

[11]  D. Adam,et al.  Fluctuations in T-wave morphology and susceptibility to ventricular fibrillation. , 1984, Journal of electrocardiology.

[12]  A. T. Winfree,et al.  Evolving perspectives during 12 years of electrical turbulence. , 1998, Chaos.

[13]  B B Lerman,et al.  Nonlinear-dynamical arrhythmia control in humans , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Christini,et al.  Using chaos control and tracking to suppress a pathological nonchaotic rhythm in a cardiac model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[16]  M. Yamaki,et al.  Discordant S-T alternans contributes to formation of reentry: a possible mechanism of reperfusion arrhythmia. , 1998, The American journal of physiology.

[17]  L. Glass,et al.  DYNAMIC CONTROL OF CARDIAC ALTERNANS , 1997 .

[18]  Blas Echebarria,et al.  Spatiotemporal control of cardiac alternans. , 2002, Chaos.

[19]  D. Adam,et al.  Period multupling-evidence for nonlinear behaviour of the canine heart , 1984, Nature.

[20]  Arun V. Holden,et al.  Resonant drift of an autowave vortex in a bounded medium , 1993 .

[21]  R. Verrier,et al.  Dynamic tracking of cardiac vulnerability by complex demodulation of the T wave. , 1991, Science.

[22]  R J Cohen,et al.  Electrical alternans and cardiac electrical instability. , 1988, Circulation.

[23]  William L. Ditto,et al.  Removal, Suppression, and Control of Chaos by Nonlinear Design , 1995 .

[24]  Daniel J Gauthier,et al.  Experimental control of cardiac muscle alternans. , 2002, Physical review letters.

[25]  Mari Watanabe,et al.  Strategy for control of complex low-dimensional dynamics in cardiac tissue , 1996, Journal of mathematical biology.

[26]  J. Ruskin,et al.  Electrical alternans and vulnerability to ventricular arrhythmias. , 1994, The New England journal of medicine.

[27]  A V Holden,et al.  Design principles of a low voltage cardiac defibrillator based on the effect of feedback resonant drift. , 1994, Journal of theoretical biology.

[28]  Guanrong Chen,et al.  LINEAR TIME-DELAY FEEDBACK CONTROL OF A PATHOLOGICAL RHYTHM IN A CARDIAC CONDUCTION MODEL , 1997 .