Quantum confinement of excitons in wurtzite InP nanowires

Exciton resonances are observed in photocurrent spectra of 80 nm wurtzite InP nanowire devices at low temperatures, which correspond to transitions between the A, B, and C valence bands and the lower conduction band. Photocurrent spectra for 30 nm WZ nanowires exhibit shifts of the exciton resonances to higher energy, which are consistent with finite element calculations of wavefunctions of the confined electrons and holes for the various bands.

[1]  M. Capizzi,et al.  Polarized light absorption in wurtzite InP nanowire ensembles. , 2015, Nano letters.

[2]  A. Zunger,et al.  Reinterpretation of the expected electronic density of states of semiconductor nanowires. , 2015, Nano letters.

[3]  H. Jackson,et al.  Illuminating the second conduction band and spin-orbit energy in single wurtzite InP nanowires. , 2013, Nano letters.

[4]  F. Dimroth,et al.  InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit , 2013, Science.

[5]  Bryan M. Wong,et al.  Optical, structural, and numerical investigations of GaAs/AlGaAs core-multishell nanowire quantum well tubes. , 2013, Nano letters.

[6]  H. Tan,et al.  III–V semiconductor nanowires for optoelectronic device applications , 2011, 2013 International Conference on Microwave and Photonics (ICMAP).

[7]  V. Zwiller,et al.  Bright single-photon sources in bottom-up tailored nanowires , 2012, Nature Communications.

[8]  Bryan M. Wong,et al.  Nanoscale Effects on Heterojunction Electron Gases in GaN/AlGaN Core/Shell Nanowires , 2011, Nano letters.

[9]  R. LaPierre,et al.  Sulfur passivation and contact methods for GaAs nanowire solar cells , 2011, Nanotechnology.

[10]  A. Cantarero,et al.  Ab initio electronic band structure calculation of InP in the wurtzite phase , 2011 .

[11]  G. O. Dias,et al.  Valence-band splitting energies in wurtzite InP nanowires: Photoluminescence spectroscopy and ab initio calculations , 2010 .

[12]  L. M. Smith,et al.  Probing valence band structure in wurtzite InP nanowires using excitation spectroscopy , 2010 .

[13]  H. Jackson,et al.  Direct measure of strain and electronic structure in GaAs/GaP core-shell nanowires. , 2010, Nano letters.

[14]  Chennupati Jagadish,et al.  Phase perfection in zinc Blende and Wurtzite III-V nanowires using basic growth parameters. , 2010, Nano letters.

[15]  Philippe Caroff,et al.  Control of III–V nanowire crystal structure by growth parameter tuning , 2010 .

[16]  C. Pryor,et al.  Predicted band structures of III-V semiconductors in the wurtzite phase , 2009, 0908.1984.

[17]  H. Jackson,et al.  The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires , 2009, Nanotechnology.

[18]  L. M. Smith,et al.  Room temperature photocurrent spectroscopy of single zincblende and wurtzite InP nanowires , 2009 .

[19]  Chennupati Jagadish,et al.  Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures. , 2009, Nano letters.

[20]  Lyubov V. Titova,et al.  Polarization and temperature dependence of photoluminescence from zincblende and wurtzite InP nanowires , 2007 .

[21]  H. Ruda,et al.  Polarization-sensitive optical phenomena in thick semiconducting nanowires , 2006 .

[22]  L. Keldysh Excitons in Semiconductor–Dielectric Nanostructures , 1997 .

[23]  G. D. Pettit,et al.  Exciton Absorption and Emission in InP , 1964 .

[24]  R. J. Elliott,et al.  Intensity of Optical Absorption by Excitons , 1957 .