Topology optimization of subsonic compressible flows

This work proposes a new topology optimization formulation to subsonic compressible flows. Compressible flows can be seen in many aerodynamic problems and optimization techniques can be used to improve designs of wings, diffusers, and other applications. In this work, the compressible Navier-Stokes equations are used coupled with a density-based material model. The effects of the material model are shown for both the momentum and energy equations. Two objective functions are considered, the entropy variation in a control volume and the entropy generation. The algorithm is implemented by a finite element model to solve the state equations. The pyadjoint libraries are used to perform the automatic sensitivity derivation and an internal point optimizer is used to update the design variable. The algorithm is evaluated by performing the optimization of 2D domains and a 3D diffuser. The results show optimized designs with reduced entropy generation.

[1]  Volker John,et al.  Reference values for drag and lift of a two‐dimensional time‐dependent flow around a cylinder , 2004 .

[2]  J. Alonso,et al.  Unsteady Continuous Adjoint Approach for Aerodynamic Design on Dynamic Meshes , 2015 .

[3]  L. H. Olesen,et al.  A high‐level programming‐language implementation of topology optimization applied to steady‐state Navier–Stokes flow , 2004, physics/0410086.

[4]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[5]  Richard Edwin Sonntag,et al.  Fundamentals of Thermodynamics , 1998 .

[6]  James K. Guest,et al.  Level set topology optimization of fluids in Stokes flow , 2009 .

[7]  Simon W. Funke,et al.  A framework for automated PDE-constrained optimisation , 2013, ArXiv.

[8]  G. Rieker,et al.  Optimization for Internal Turbulent Compressible Flows Using Adjoints , 2017 .

[9]  G. Flamant,et al.  Entropy generation minimization in a channel flow: Application to different advection-diffusion processes and boundary conditions , 2020 .

[10]  Kurt Maute,et al.  Optimal design for non-Newtonian flows using a topology optimization approach , 2010, Comput. Math. Appl..

[11]  E. C. N. Silva,et al.  Design optimization of laminar flow machine rotors based on the topological derivative concept , 2017 .

[12]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms in Engineering Applications , 1997, Springer Berlin Heidelberg.

[13]  J. Eric,et al.  Aerodynamic Design Optimization on Unstructured Meshes Using the Navier-Stokes Equations , 1998 .

[14]  Oktay Baysal,et al.  Three-dimensional aerodynamic shape optimization of wings using sensitivity analysis , 1994 .

[15]  W. K. Anderson,et al.  Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation , 1997 .

[16]  A. Jameson,et al.  Optimum Aerodynamic Design Using the Navier–Stokes Equations , 1997 .

[17]  L. Ridgway Scott,et al.  Towards a Unified Finite Element Method for the Stokes Equations , 2018, SIAM J. Sci. Comput..

[18]  Cetin Batur Dilgen,et al.  Topology Optimization of Turbulent Flows , 2018 .

[19]  Kyriakos C. Giannakoglou,et al.  A continuous adjoint method with objective function derivatives based on boundary integrals, for inviscid and viscous flows , 2007 .

[20]  Kazuhiro Nakahashi,et al.  Euler/Navier-Stokes Optimization of Supersonic Wing Design Based on Evolutionary Algorithm , 1999 .

[21]  L. F. N. Sá,et al.  Topology optimization based on a two-dimensional swirl flow model of Tesla-type pump devices , 2019, Comput. Math. Appl..

[22]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[23]  Gil Ho Yoon,et al.  Topology optimization for turbulent flow with Spalart-Allmaras model , 2016 .

[24]  Gunar Matthies,et al.  International Journal for Numerical Methods in Fluids Higher-order Finite Element Discretizations in a Benchmark Problem for Incompressible Flows , 2022 .

[25]  Jiri Blazek,et al.  Computational Fluid Dynamics: Principles and Applications , 2001 .

[26]  J. Petersson,et al.  Topology optimization of fluids in Stokes flow , 2003 .

[27]  Jaime Peraire,et al.  Aerodynamic design using unstructured meshes , 1996 .

[28]  A. Evgrafov The Limits of Porous Materials in the Topology Optimization of Stokes Flows , 2005 .

[29]  Juan J. Alonso,et al.  A Viscous Continuous Adjoint Approach for the Design of Rotating Engineering Applications , 2013 .

[30]  G. Yoon Topology optimization method with finite elements based on the k-εturbulence model , 2020 .

[31]  J. Reddy,et al.  The Finite Element Method in Heat Transfer and Fluid Dynamics , 1994 .

[32]  Enrique Zuazua,et al.  Systematic Continuous Adjoint Approach to Viscous Aerodynamic Design on Unstructured Grids , 2007 .

[33]  A. Evgrafov Topology optimization of slightly compressible fluids , 2006 .

[34]  H. Cao,et al.  Navier-Stokes/genetic optimization of multi-element airfoils , 1996 .

[35]  M. Darwish,et al.  The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM® and Matlab , 2015 .

[36]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[37]  K. Giannakoglou,et al.  Continuous Adjoint Methods for Turbulent Flows, Applied to Shape and Topology Optimization: Industrial Applications , 2016 .

[38]  C. Othmer,et al.  Multi-Objective Adjoint Optimization of Intake Port Geometry , 2012 .

[39]  A. Jameson,et al.  A COMPARISON OF THE CONTINUOUS AND DISCRETE ADJOINT APPROACH TO AUTOMATIC AERODYNAMIC OPTIMIZATION , 2000 .

[40]  M. J. Rimlinger,et al.  Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers , 1997 .

[41]  O. Horikawa,et al.  Topology optimization applied to the development of small scale pump , 2018 .

[42]  E. C. N. Silva,et al.  Topological derivatives applied to fluid flow channel design optimization problems , 2016 .

[43]  L. F. N. Sá,et al.  Topology optimization of turbulent rotating flows using Spalart–Allmaras model , 2021 .

[44]  Russell M. Cummings,et al.  Supersonic, turbulent flow computation and drag optimization for axisymmetric afterbodies , 1995 .

[45]  Andreas Wächter,et al.  Short Tutorial: Getting Started With Ipopt in 90 Minutes , 2009, Combinatorial Scientific Computing.

[46]  L. F. N. Sá,et al.  Topology optimization applied to the design of 2D swirl flow devices , 2018, Structural and Multidisciplinary Optimization.

[47]  C. Othmer A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows , 2008 .

[48]  David A. Ham,et al.  Automated Derivation of the Adjoint of High-Level Transient Finite Element Programs , 2013, SIAM J. Sci. Comput..

[49]  O. Sigmund,et al.  Topology optimization of channel flow problems , 2005 .

[50]  R. W. Fox,et al.  Fox and McDonald's Introduction to Fluid Mechanics , 2011 .

[51]  Emílio Carlos Nelli Silva,et al.  A topology optimization approach applied to laminar flow machine rotor design , 2014 .

[52]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..