Elucidating the Effect of Polyethylene Terephthalate Chain Structure on Its Enzymatic Degradation Behavior

[1]  Cameron J. Hunt,et al.  Rate Response of Poly(Ethylene Terephthalate) (PET)-Hydrolases to Substrate Crystallinity: Basis for Understanding the Lag Phase. , 2023, ChemSusChem.

[2]  S. Duquesne,et al.  Enzymes' Power for Plastics Degradation. , 2023, Chemical reviews.

[3]  U. Bornscheuer,et al.  Rapid depolymerization of poly(ethylene terephthalate) thin films by a dual-enzyme system and its impact on material properties , 2022, Chem catalysis.

[4]  Christoffel P. S. Badenhorst,et al.  Multiple Substrate Binding Mode-Guided Engineering of a Thermophilic PET Hydrolase , 2022, ACS catalysis.

[5]  A. Meyer,et al.  Influence of substrate crystallinity and glass transition temperature on enzymatic degradation of polyethylene terephthalate (PET). , 2022, New biotechnology.

[6]  Rupali Reddy Pasula,et al.  The influences of substrates' physical properties on enzymatic PET hydrolysis: Implications for PET hydrolase engineering , 2022, Engineering biology.

[7]  Christoffel P. S. Badenhorst,et al.  Mechanism-Based Design of Efficient PET Hydrolases , 2022, ACS catalysis.

[8]  J. Nikiema,et al.  A review of the cost and effectiveness of solutions to address plastic pollution , 2022, Environmental Science and Pollution Research.

[9]  G. Beckham,et al.  Comparative Performance of PETase as a Function of Reaction Conditions, Substrate Properties, and Product Accumulation. , 2021, ChemSusChem.

[10]  B. Höcker,et al.  Impact of Enzymatic Degradation on the Material Properties of Poly(Ethylene Terephthalate) , 2021, Polymers.

[11]  M. Rafizadeh,et al.  Branched polyester based on the polyethylene tere/iso phthalate and trimellitic anhydride as branching agent , 2021, Polymer Bulletin.

[12]  K. Houk,et al.  Computational Redesign of a PETase for Plastic Biodegradation under Ambient Condition by the GRAPE Strategy , 2021 .

[13]  N. Golshan Ebrahimi,et al.  Introducing four different branch structures in PET by reactive processing––A rheological investigation , 2020 .

[14]  G. Britovsek,et al.  Polyethylene terephthalate degradation under natural and accelerated weathering conditions , 2020 .

[15]  S. Duquesne,et al.  An engineered PET depolymerase to break down and recycle plastic bottles , 2020, Nature.

[16]  Hsin‐Lung Chen,et al.  Preparation of long-chain branched polyethylene terephthalates (PETs), and crystallization behaviors, thermal characteristics, and hydrolysis resistance of their biaxially stretching films , 2019, Journal of Physics and Chemistry of Solids.

[17]  Ren Wei,et al.  Biocatalytic Degradation Efficiency of Postconsumer Polyethylene Terephthalate Packaging Determined by Their Polymer Microstructures , 2019, Advanced science.

[18]  H. Sardón,et al.  PET-ran-PLA Partially Degradable Random Copolymers Prepared by Organocatalysis: Effect of Poly(l-lactic acid) Incorporation on Crystallization and Morphology , 2019, ACS Sustainable Chemistry & Engineering.

[19]  Sang Yup Lee,et al.  Rational Protein Engineering of Thermo-Stable PETase from Ideonella sakaiensis for Highly Efficient PET Degradation , 2019, ACS Catalysis.

[20]  Fiona L. Kearns,et al.  Characterization and engineering of a plastic-degrading aromatic polyesterase , 2018, Proceedings of the National Academy of Sciences.

[21]  P. Dubruel,et al.  Single‐step solution polymerization of poly(alkylene terephthalate)s: synthesis parameters and polymer characterization , 2018 .

[22]  T. Ko,et al.  Structural insight into catalytic mechanism of PET hydrolase , 2017, Nature Communications.

[23]  Mohan R. Pradhan,et al.  Small Molecules Targeting the Inactive Form of the Mnk1/2 Kinases , 2017, ACS omega.

[24]  A. T. Sutton,et al.  Assessment of the Branching Quantification in Poly(acrylic acid): Is It as Easy as It Seems? , 2017 .

[25]  M. Wagner,et al.  Rheological and molecular characterization of long-chain branched poly(ethylene terephthalate) , 2017, Rheologica Acta.

[26]  Jeannette M. García,et al.  Chemical recycling of waste plastics for new materials production , 2017 .

[27]  Gregory T. Russell,et al.  Effect of transfer agent, temperature and initial monomer concentration on branching in poly(acrylic acid): A study by 13C NMR spectroscopy and capillary electrophoresis , 2017 .

[28]  A. M. Azhdarpour,et al.  The effect of using polyethylene terephthalate particles on physical and strength-related properties of concrete; a laboratory evaluation , 2016 .

[29]  Y. Kimura,et al.  A bacterium that degrades and assimilates poly(ethylene terephthalate) , 2016, Science.

[30]  C. Simmerling,et al.  ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. , 2015, Journal of chemical theory and computation.

[31]  M. Philip,et al.  Effect of multiple extrusions and influence of PP contamination on the thermal characteristics of bottle grade recycled PET , 2015 .

[32]  S. Kim,et al.  Poly (ethylene terephthalate) recycling for high value added textiles , 2014, Fashion and Textiles.

[33]  É. Devaux,et al.  Thermal and fire resistance of fibrous materials made by PET containing flame retardant agents , 2012 .

[34]  L. Häussler,et al.  Effect of the degree of branching on the glass transition temperature of polyesters , 2012 .

[35]  J. Pascault,et al.  Efficiency Increase of Poly (ethylene terephthalate-co-isosorbide terephthalate) Synthesis using Bim , 2011 .

[36]  F. Welle Twenty years of PET bottle to bottle recycling—An overview , 2011 .

[37]  V. Sinha,et al.  Pet Waste Management by Chemical Recycling: A Review , 2010 .

[38]  A. M. D. Ilarduya,et al.  Poly(ethylene terephthalate‐co‐isophthalate) copolyesters obtained from ethylene terephthalate and isophthalate oligomers , 2010 .

[39]  Richard A. Gross,et al.  Cutinase-Catalyzed Hydrolysis of Poly(ethylene terephthalate) , 2009 .

[40]  R. Gilbert,et al.  Assessment of the extent of starch dissolution in dimethyl sulfoxide by 1H NMR spectroscopy. , 2009, Macromolecular bioscience.

[41]  Yunfeng Shi,et al.  Role of branching architecture on the glass transition of hyperbranched polyethers. , 2009, The journal of physical chemistry. B.

[42]  V. Nierstrasz,et al.  Enzymatic surface modification of poly(ethylene terephthalate). , 2005, Journal of biotechnology.

[43]  W. Deckwer,et al.  Enzymatic Degradation of Poly(ethylene terephthalate): Rapid Hydrolyse using a Hydrolase from T. fusca , 2005 .

[44]  M. McKee,et al.  Branched polyesters: recent advances in synthesis and performance , 2005 .

[45]  H. Jeon,et al.  Assessment of chemical resistance of textile geogrids manufactured with PET high-performance yarn , 2005 .

[46]  M. S. Farahat,et al.  New motivation for the depolymerization products derived from poly(ethylene terephthalate) (PET) waste: a review , 2005 .

[47]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[48]  Nikos Ch. Karayiannis,et al.  Detailed Atomistic Simulation of the Segmental Dynamics and Barrier Properties of Amorphous Poly(ethylene terephthalate) and Poly(ethylene isophthalate) , 2004 .

[49]  Matthew P. Repasky,et al.  Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. , 2004, Journal of medicinal chemistry.

[50]  M. Xanthos,et al.  Molecular and structural analysis of a triepoxide-modified poly(ethylene terephthalate) from rheological data , 2003 .

[51]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[52]  A. M. D. Ilarduya,et al.  Sequence Analysis of Poly(ethylene terephthalate-co-isophthalate) Copolymers by 13C NMR , 2000 .

[53]  Z. Mo,et al.  The Degree of Crystallinity in Polymers by Wide-Angle X-Ray Diffraction (Waxd) , 1995 .

[54]  Jean M. J. Fréchet,et al.  Influence of shape on the reactivity and properties of dendritic, hyperbranched and linear aromatic polyesters. , 1994 .

[55]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[56]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[57]  F. Pilati,et al.  Synthesis and characterization of highly-branched poly(ethylene terephthalate) , 1986 .

[58]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[59]  R. W. Seymour,et al.  Effect of sub‐Tg relaxations on the gas transport properties of polyesters , 1982 .

[60]  B. Wunderlich,et al.  Equilibrium melting parameters of poly(ethylene terephthalate) , 1978 .

[61]  X. Ramis,et al.  The Effect of the Degree of Branching in Hyperbranched Polyesters Used as Reactive Modifiers in Epoxy Thermosets , 2012 .