Spectroscopic investigations of the potential-sensitive membrane probe RH421.

[1]  C. Chien,et al.  Voltage-sensitive dye recording of action potentials and synaptic potentials from sympathetic microcultures. , 1991, Biophysical journal.

[2]  F. Cornelius Functional reconstitution of the sodium pump. Kinetics of exchange reactions performed by reconstituted Na/K-ATPase. , 1991, Biochimica et biophysica acta.

[3]  J. Skou,et al.  The energy coupled exchange of Na+ for K+ across the cell membrane , 1990 .

[4]  J. Smith Potential-sensitive molecular probes in membranes of bioenergetic relevance. , 1990, Biochimica et biophysica acta.

[5]  P. Fromherz,et al.  Fluorescence and photoisomerization of an amphiphilic aminostilbazolium dye as controlled by the sensitivity of radiationless deactivation to polarity and viscosity , 1989 .

[6]  F. Cornelius,et al.  The sided action of Na+ on reconstituted shark Na+/K+-ATPase engaged in Na+-Na+ exchange accompanied by ATP hydrolysis. II. Transmembrane allosteric effects on Na+ affinity. , 1988, Biochimica et biophysica acta.

[7]  PB Manis,et al.  Fluorescence recordings of electrical activity in goldfish optic tectum in vitro , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  A Grinvald,et al.  Optical recording of synaptic potentials from processes of single neurons using intracellular potentiometric dyes. , 1987, Biophysical journal.

[9]  W. H. Elliott,et al.  Data for Biochemical Research , 1986 .

[10]  Wilfred D. Stein,et al.  Transport and Diffusion Across Cell Membranes , 1986 .

[11]  R. Schwendener,et al.  (Na+ + K+)-ATPase in artificial lipid vesicles: influence of lipid structure on pumping rate. , 1986, Biochimica et biophysica acta.

[12]  M. Frosch,et al.  Temperature-jump studies of merocyanine 540 relaxation kinetics in lipid bilayer membranes. , 1985, Biochemistry.

[13]  L M Loew,et al.  Spectra, membrane binding, and potentiometric responses of new charge shift probes. , 1985, Biochemistry.

[14]  A. Demchenko,et al.  Nanosecond dynamics of charged fluorescent probes at the polar interface of a membrane phospholipid bilayer. , 1985, Biophysical chemistry.

[15]  W. Stein,et al.  Cation activation of the pig kidney sodium pump: transmembrane allosteric effects of sodium. , 1985, The Journal of physiology.

[16]  F Bezanilla,et al.  Charge-shift probes of membrane potential. Characterization of aminostyrylpyridinium dyes on the squid giant axon. , 1985, Biophysical journal.

[17]  A. Azzi,et al.  Membrane-potential-dependent changes of the lipid microviscosity of mitochondria and phospholipid vesicles. , 1984, The Biochemical journal.

[18]  Zvi A. Meiri,et al.  A MICROSECOND KINETIC STUDY OF THE PHOTOGENERATED MEMBRANE POTENTIAL OF BACTERIORHODOPSIN WITH A FAST RESPONDING DYE , 1984 .

[19]  A. Grinvald,et al.  Fluorescence monitoring of electrical responses from small neurons and their processes. , 1983, Biophysical journal.

[20]  Ivkova Mn,et al.  [Mechanism of the fluorescent response of carbocyanine probe diS-C3-(5) to membrane potential change]. , 1983 .

[21]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[22]  A Grinvald,et al.  Improved fluorescent probes for the measurement of rapid changes in membrane potential. , 1982, Biophysical journal.

[23]  L M Loew,et al.  Design and characterization of electrochromic membrane probes. , 1982, Journal of biochemical and biophysical methods.

[24]  L. Loew,et al.  Charge-shift probes of membrane potential: a probable electrochromic mechanism for p-aminostyrylpyridinium probes on a hemispherical lipid bilayer. , 1981, Biophysical journal.

[25]  S. Krasne Interactions of voltage-sensing dyes with membranes. II. Spectrophotometric and electrical correlates of cyanine-dye adsorption to membranes. , 1980, Biophysical journal.

[26]  S. Scully,et al.  Evidence for a charge-shift electrochromic mechanism in a probe of membrane potential , 1979, Nature.

[27]  L. Loew,et al.  AN UNEXPECTED BLUE SHIFT CAUSED BY DIFFERENTIAL SOLVATION OF A CHROMOPHORE ORIENTED IN A LIPID BILAYER , 1979 .

[28]  A. Waggoner,et al.  Dye indicators of membrane potential. , 1979, Annual review of biophysics and bioengineering.

[29]  W. Webb,et al.  Mechanism of the membrane potential sensitivity of the fluorescent membrane probe merocyanine 540. , 1978, Biochemistry.

[30]  L. Loew,et al.  Charge shift optical probes of membrane potential. Theory. , 1978, Biochemistry.

[31]  L B Cohen,et al.  Optical measurement of membrane potential. , 1978, Reviews of physiology, biochemistry and pharmacology.

[32]  A Grinvald,et al.  Mechanisms of rapid optical changes of potential sensitive dyes. , 1977, Annals of the New York Academy of Sciences.

[33]  R. Post,et al.  Phosphorylation from adenosine triphosphate of sodium- and potassium-activated adenosine triphosphatase. Comparison of enzyme-ligand complexes as precursors to the phosphoenzyme. , 1977, The Journal of biological chemistry.

[34]  I. Tasaki,et al.  DYE‐MEMBRANE INTERACTION AND ITS CHANGES DURING NERVE EXCITATION , 1976, Photochemistry and photobiology.

[35]  I. Glynn,et al.  ATP hydrolysis associated with an uncoupled sodium flux through the sodium pump: evidence for allosteric effects of intracellular ATP and extracellular sodium , 1976, The Journal of physiology.

[36]  K. Taniguchi,et al.  Synthesis of adenosine triphosphate and exchange between inorganic phosphate and adenosine triphosphate in sodium and potassium ion transport adenosine triphosphatase. , 1975, The Journal of biological chemistry.

[37]  W. N. Ross,et al.  A large change in dye absorption during the action potential. , 1974, Biophysical journal.

[38]  C H Wang,et al.  Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. , 1974, Biochemistry.

[39]  K. Nagano,et al.  The Sodium- and Potassium-Activated Adenosinetriphosphatase System , 1971 .

[40]  D. Webb,et al.  Photoluminescence of solutions , 1969 .

[41]  William W. West,et al.  The Dimeric State of Cyanine Dyes , 1965 .