Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation

Discovered in 1993, micoRNAs (miRNAs) are now recognized as one of the major regulatory gene families in eukaryotes. To date, 24521 microRNAs have been discovered and there are certainly more to come. It was primarily acknowledged that miRNAs result in gene expression repression at both the level of mRNA stability by conducting mRNA degradation and the level of translation (at initiation and after initiation) by inhibiting protein translation or degrading the polypeptides through binding complementarily to 3′UTR of the target mRNAs. Nevertheless, some studies revealed that miRNAs have the capability of activating gene expression directly or indirectly in respond to different cell types and conditions and in the presence of distinct cofactors. This reversibility in their posttranslational gene regulatory natures enables the bearing cells to rapidly response to different cell conditions and consequently block unnecessary energy wastage or maintain the cell state. This paper provides an overview of the current understandings of the miRNA characteristics including their genes and biogenesis, as well as their mediated downregulation. We also review up-to-date knowledge of miRNA-mediated gene upregulation through highlighting some notable examples and discuss the emerging concepts of their associations with other posttranscriptional gene regulation processes.

[1]  C. Croce,et al.  Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M. Chen,et al.  miR-200c inhibits invasion and migration in human colon cancer cells SW480/620 by targeting ZEB1 , 2012, Clinical & Experimental Metastasis.

[3]  W. Filipowicz,et al.  RNAi: The Nuts and Bolts of the RISC Machine , 2005, Cell.

[4]  S. Ceman,et al.  Isolation of an FMRP-Associated Messenger Ribonucleoprotein Particle and Identification of Nucleolin and the Fragile X-Related Proteins as Components of the Complex , 1999, Molecular and Cellular Biology.

[5]  W. Filipowicz,et al.  Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. , 2004, RNA.

[6]  Michael Niepmann,et al.  microRNA-122 stimulates translation of hepatitis C virus RNA , 2008, The EMBO journal.

[7]  S. Vasudevan Posttranscriptional Upregulation by MicroRNAs , 2012, Wiley interdisciplinary reviews. RNA.

[8]  P. Pandolfi,et al.  A coding-independent function of gene and pseudogene mRNAs regulates tumour biology , 2010, Nature.

[9]  J. Steitz,et al.  Posttranscriptional activation of gene expression in Xenopus laevis oocytes by microRNA–protein complexes (microRNPs) , 2011, Proceedings of the National Academy of Sciences.

[10]  J. Miranda-Ríos,et al.  The Emerging Role of MicroRNAs in the Regulation of Gene Expression by Nutrients , 2013, Lifestyle Genomics.

[11]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[12]  E. Finnegan,et al.  The small RNA world , 2003, Journal of Cell Science.

[13]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[14]  B. Davidson,et al.  RNA polymerase III transcribes human microRNAs , 2006, Nature Structural &Molecular Biology.

[15]  Tanja Kunej,et al.  Genome-Wide and Species-Wide In Silico Screening for Intragenic MicroRNAs in Human, Mouse and Chicken , 2013, PloS one.

[16]  X. Li,et al.  Transcriptional regulation of mammalian miRNA genes. , 2011, Genomics.

[17]  Petra Schwille,et al.  Importin 8 Is a Gene Silencing Factor that Targets Argonaute Proteins to Distinct mRNAs , 2009, Cell.

[18]  Cornelia Dietrich,et al.  The transcriptional programme of contact‐inhibition , 2010, Journal of cellular biochemistry.

[19]  A. Pasquinelli,et al.  Regulation by let-7 and lin-4 miRNAs Results in Target mRNA Degradation , 2005, Cell.

[20]  M. Niepmann Activation of hepatitis c virus translation by a liver-specific microRNA , 2009, Cell cycle.

[21]  W. Filipowicz,et al.  Stress-induced reversal of microRNA repression and mRNA P-body localization in human cells. , 2006, Cold Spring Harbor symposia on quantitative biology.

[22]  C. Sander,et al.  A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing , 2007, Cell.

[23]  H. Grosshans,et al.  Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins , 2009, The EMBO journal.

[24]  Phillip D Zamore,et al.  Why do miRNAs live in the miRNP? , 2002, Genes & development.

[25]  S. Colowick,et al.  Methods in Enzymology , Vol , 1966 .

[26]  K. Jeang,et al.  Long noncoding RNAs and viral infections , 2013, BioMedicine.

[27]  Barbara Burwinkel,et al.  Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma , 2012, RNA biology.

[28]  J. Neilson,et al.  Zcchc11-dependent uridylation of microRNA directs cytokine expression , 2009, Nature Cell Biology.

[29]  H. Berg Cold Spring Harbor Symposia on Quantitative Biology.: Vol. LII. Evolution of Catalytic Functions. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1987, ISBN 0-87969-054-2, xix + 955 pp., US $150.00. , 1989 .

[30]  Shuang Huang,et al.  Involvement of MicroRNA in AU-Rich Element-Mediated mRNA Instability , 2005, Cell.

[31]  A. Cherniack,et al.  Suppression of oxidative metabolism and mitochondrial biogenesis by the transcriptional corepressor RIP140 in mouse adipocytes. , 2005, The Journal of clinical investigation.

[32]  V. Kim,et al.  Biogenesis of small RNAs in animals , 2009, Nature Reviews Molecular Cell Biology.

[33]  C. Y. Chen,et al.  AU-rich elements: characterization and importance in mRNA degradation. , 1995, Trends in biochemical sciences.

[34]  Jean Hausser,et al.  MicroRNA binding sites in the coding region of mRNAs: Extending the repertoire of post‐transcriptional gene regulation , 2014, BioEssays : news and reviews in molecular, cellular and developmental biology.

[35]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[36]  Nan Li,et al.  MicroRNA-466l Upregulates IL-10 Expression in TLR-Triggered Macrophages by Antagonizing RNA-Binding Protein Tristetraprolin-Mediated IL-10 mRNA Degradation , 2010, The Journal of Immunology.

[37]  M. Hatzoglou,et al.  Nutritional Control of mRNA Stability Is Mediated by a Conserved AU-rich Element That Binds the Cytoplasmic Shuttling Protein HuR* , 2002, The Journal of Biological Chemistry.

[38]  Emily A. Vucic,et al.  Human Cancer Long Non-Coding RNA Transcriptomes , 2011, PloS one.

[39]  B. Cullen,et al.  Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. , 2004, Nucleic acids research.

[40]  Xiaowei Wang,et al.  Composition of seed sequence is a major determinant of microRNA targeting patterns , 2014, Bioinform..

[41]  A. Sobel,et al.  The Journal of Biological Chemistry. , 2009, Nutrition reviews.

[42]  J. Lykke-Andersen,et al.  Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. , 2005, Genes & development.

[43]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[44]  M. Ladomery,et al.  MicroRNAs: their discovery, biogenesis, function and potential use as biomarkers in non-invasive prenatal diagnostics. , 2011, International journal of molecular epidemiology and genetics.

[45]  P. Fraser,et al.  No-Nonsense Functions for Long Noncoding RNAs , 2011, Cell.

[46]  S. Srikantan,et al.  LincRNA-p21 Suppresses Target mRNA Translation [Molecular Cell 47, (2012) 648-655] , 2013 .

[47]  P. Zamore,et al.  Small silencing RNAs: an expanding universe , 2009, Nature Reviews Genetics.

[48]  G. Schratt,et al.  MicroRNA as modulators of neuronal responses , 2009, Communicative & integrative biology.

[49]  R. Perry,et al.  Oligopyrimidine tract at the 5' end of mammalian ribosomal protein mRNAs is required for their translational control. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. Steitz,et al.  Overexpression of HuR, a nuclear–cytoplasmic shuttling protein, increases the in vivo stability of ARE‐containing mRNAs , 1998, The EMBO journal.

[51]  J. Steitz,et al.  AU-Rich-Element-Mediated Upregulation of Translation by FXR1 and Argonaute 2 , 2007, Cell.

[52]  M. Régnier,et al.  Interactions of intergenic microRNAs with mRNAs of genes involved in carcinogenesis , 2012, Bioinformation.

[53]  U. Kutay,et al.  Nuclear Export of MicroRNA Precursors , 2004, Science.

[54]  Zissimos Mourelatos,et al.  MicroRNAs: Biogenesis and Molecular Functions , 2008, Brain pathology.

[55]  W. Filipowicz,et al.  The widespread regulation of microRNA biogenesis, function and decay , 2010, Nature Reviews Genetics.

[56]  Bing Wang,et al.  MicroRNAs involving in cold, wounding and salt stresses in Triticum aestivum L. , 2014, Plant physiology and biochemistry : PPB.

[57]  M. Niepmann,et al.  The role of microRNAs in hepatitis C virus RNA replication , 2013, Archives of Virology.

[58]  J. A. Steitz,et al.  HuR and mRNA stability , 2001, Cellular and Molecular Life Sciences CMLS.

[59]  V. Scaria,et al.  MicroRNA-mediated up-regulation of an alternatively polyadenylated variant of the mouse cytoplasmic β-actin gene , 2008, Nucleic acids research.

[60]  Melissa J. Moore,et al.  Pre-mRNA Processing Reaches Back toTranscription and Ahead to Translation , 2009, Cell.

[61]  R. Stephens,et al.  The Identification of MicroRNAs in a Genomically Unstable Region of Human Chromosome 8q24 , 2008, Molecular Cancer Research.

[62]  Mikiko C. Siomi,et al.  The Discovery of Rna Interference (rnai) Biogenesis of Small Rnas on the Road to Reading the Rna-interference Code Insight Review , 2022 .

[63]  Jin-Wu Nam,et al.  Genomics of microRNA. , 2006, Trends in genetics : TIG.

[64]  V. Kim MicroRNA biogenesis: coordinated cropping and dicing , 2005, Nature Reviews Molecular Cell Biology.

[65]  M. Gorospe,et al.  Antiapoptotic function of RNA‐binding protein HuR effected through prothymosin α , 2005, The EMBO journal.

[66]  Li-Na Wei Retinoids and receptor interacting protein 140 (RIP140) in gene regulation. , 2004, Current medicinal chemistry.

[67]  Li-Na Wei,et al.  MicroRNA mir-346 targets the 5'-untranslated region of receptor-interacting protein 140 (RIP140) mRNA and up-regulates its protein expression. , 2009, The Biochemical journal.

[68]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[69]  P. Sarnow,et al.  Masking the 5′ terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex , 2011, Proceedings of the National Academy of Sciences.

[70]  A. Shyu,et al.  RNA stabilization by the AU‐rich element binding protein, HuR, an ELAV protein , 1998, The EMBO journal.

[71]  Y. Tomari,et al.  Argonaute-mediated translational repression (and activation) , 2009, Fly.

[72]  Stephen Safe,et al.  The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. , 2007, Cancer research.

[73]  G. Brabant,et al.  Global microRNA profiling of pancreatic neuroendocrine neoplasias. , 2014, Anticancer research.

[74]  Jun S. Song,et al.  Chromatin structure analyses identify miRNA promoters , 2008 .

[75]  V. Ferrans,et al.  Tyrosine and phenylalanine restriction induces G0/G1 cell cycle arrest in murine melanoma in vitro and in vivo. , 1997, Nutrition and Cancer.

[76]  M. Byrom,et al.  Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis , 2005, Nucleic acids research.

[77]  L. Stanton,et al.  Long non‐coding RNAs in stem cell pluripotency , 2013, Wiley interdisciplinary reviews. RNA.

[78]  P. Blackshear,et al.  HuR as a negative posttranscriptional modulator in inflammation. , 2005, Molecular cell.

[79]  N. Furuno,et al.  Expression of cell-cycle regulators during Xenopus oogenesis. , 2003, Gene expression patterns : GEP.

[80]  Deepak Srivastava,et al.  miR-145 and miR-143 Regulate Smooth Muscle Cell Fate Decisions , 2009, Nature.

[81]  E. Sontheimer,et al.  Origins and Mechanisms of miRNAs and siRNAs , 2009, Cell.

[82]  G. Hannon,et al.  Control of translation and mRNA degradation by miRNAs and siRNAs. , 2006, Genes & development.

[83]  P. Guyre,et al.  Estradiol Suppresses NF-κB Activation through Coordinated Regulation of let-7a and miR-125b in Primary Human Macrophages , 2010, The Journal of Immunology.

[84]  O. Meyuhas,et al.  Vertebrate mRNAs with a 5'-terminal pyrimidine tract are candidates for translational repression in quiescent cells: characterization of the translational cis-regulatory element , 1994, Molecular and cellular biology.

[85]  Moshe Oren,et al.  Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. , 2007, Molecular cell.

[86]  H. Blau,et al.  Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies , 2005, Nature Cell Biology.

[87]  S. Srikantan,et al.  Post-transcriptional gene regulation by HuR promotes a more tumorigenic phenotype , 2008, Oncogene.

[88]  O. Meyuhas Synthesis of the translational apparatus is regulated at the translational level. , 2000, European journal of biochemistry.

[89]  Kotb Abdelmohsen,et al.  Translational Control of TOP2A Influences Doxorubicin Efficacy , 2011, Molecular and Cellular Biology.

[90]  E. Chan,et al.  GW182 is critical for the stability of GW bodies expressed during the cell cycle and cell proliferation , 2004, Journal of Cell Science.

[91]  A. Pasquinelli,et al.  MicroRNA silencing through RISC recruitment of eIF6 , 2007, Nature.

[92]  W. Filipowicz,et al.  Regulation of mRNA translation and stability by microRNAs. , 2010, Annual review of biochemistry.

[93]  Wei Wu MicroRNA and Cancer , 2011, Methods in Molecular Biology.

[94]  Yong Zhao,et al.  Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis , 2005, Nature.

[95]  J. Steitz,et al.  miRNPs: versatile regulators of gene expression in vertebrate cells. , 2009, Biochemical Society transactions.

[96]  Toshio Atsuta,et al.  Kawasaki and I , 2007 .

[97]  Zhiping Weng,et al.  MicroRNAs Located in the Hox Gene Clusters Are Implicated in Huntington's Disease Pathogenesis , 2014, PLoS genetics.

[98]  S. Lemon,et al.  Competing and noncompeting activities of miR-122 and the 5′ exonuclease Xrn1 in regulation of hepatitis C virus replication , 2012, Proceedings of the National Academy of Sciences.

[99]  M. Soleimani,et al.  Mir-302 cluster exhibits tumor suppressor properties on human unrestricted somatic stem cells , 2014, Tumor Biology.

[100]  I. Gallouzi,et al.  Decoding ARE-mediated decay: is microRNA part of the equation? , 2008, The Journal of cell biology.

[101]  Kotb Abdelmohsen,et al.  LincRNA-p21 suppresses target mRNA translation. , 2012, Molecular cell.

[102]  Michael E. Greenberg,et al.  A brain-specific microRNA regulates dendritic spine development , 2006, Nature.

[103]  R. Place,et al.  Small dsRNAs induce transcriptional activation in human cells , 2006, Proceedings of the National Academy of Sciences.

[104]  G. Goodall,et al.  MiRNA-205 modulates cellular invasion and migration via regulating zinc finger E-box binding homeobox 2 expression in esophageal squamous cell carcinoma cells , 2011, Journal of Translational Medicine.

[105]  M. Caligiuri,et al.  miR-328 Functions as an RNA Decoy to Modulate hnRNP E2 Regulation of mRNA Translation in Leukemic Blasts , 2010, Cell.

[106]  W. Filipowicz,et al.  Repression of protein synthesis by miRNAs: how many mechanisms? , 2007, Trends in cell biology.

[107]  S. Grewal,et al.  Transcription and RNA interference in the formation of heterochromatin , 2007, Nature.

[108]  Michael A. Beer,et al.  Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. , 2007, Molecular cell.

[109]  T. Nilsen,et al.  Mechanisms of microRNA‐mediated gene regulation , 2007, Trends in genetics : TIG.

[110]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[111]  Ana Lleo,et al.  Primary biliary cirrhosis is associated with altered hepatic microRNA expression. , 2009, Journal of autoimmunity.

[112]  F. Slack,et al.  Identification of specific let-7 microRNA binding complexes in Caenorhabditis elegans. , 2008, RNA.

[113]  Haifan Lin,et al.  Repressing the repressor: a lincRNA as a MicroRNA sponge in embryonic stem cell self-renewal. , 2013, Developmental cell.

[114]  S. Srikantan,et al.  HuR recruits let-7/RISC to repress c-Myc expression. , 2009, Genes & development.

[115]  N. Sokol,et al.  Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression , 2010, Nature.

[116]  James M. Roberts,et al.  A New Description of Cellular Quiescence , 2006, PLoS biology.

[117]  Chen-Chung Lin,et al.  A KLF4–miRNA-206 Autoregulatory Feedback Loop Can Promote or Inhibit Protein Translation Depending upon Cell Context , 2011, Molecular and Cellular Biology.

[118]  Martina Paulsen,et al.  Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene , 2003, Nature Genetics.

[119]  Uwe Ohler,et al.  Spatial preferences of microRNA targets in 3' untranslated regions , 2007, BMC Genomics.

[120]  Xiaoxia Qi,et al.  Control of Stress-Dependent Cardiac Growth and Gene Expression by a MicroRNA , 2007, Science.

[121]  S. Vasudevan,et al.  MicroRNA-mediated mRNA Translation Activation in Quiescent Cells and Oocytes Involves Recruitment of a Nuclear microRNP , 2012, Scientific Reports.

[122]  C. Sander,et al.  miR-122, a Mammalian Liver-Specific microRNA, is Processed from hcr mRNA and MayDownregulate the High Affinity Cationic Amino Acid Transporter CAT-1 , 2004, RNA biology.

[123]  S. Kunes,et al.  Synaptic Protein Synthesis Associated with Memory Is Regulated by the RISC Pathway in Drosophila , 2006, Cell.

[124]  Oliver Hobert,et al.  A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans , 2003, Nature.

[125]  J. Rinn,et al.  Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells , 2010, Nature Genetics.

[126]  S. Lemon,et al.  Stabilization of hepatitis C virus RNA by an Ago2–miR-122 complex , 2012, Proceedings of the National Academy of Sciences.

[127]  Yue Wang,et al.  Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. , 2013, Developmental cell.

[128]  A. Harris,et al.  Hypoxia response and microRNAs: no longer two separate worlds , 2008, Journal of cellular and molecular medicine.

[129]  R. Shiekhattar,et al.  The Microprocessor complex mediates the genesis of microRNAs , 2004, Nature.

[130]  B. Séraphin,et al.  The GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies. , 2003, RNA.

[131]  W. Filipowicz,et al.  Argonautes and Company: Sailing against the Wind , 2007, Cell.

[132]  A. Nairn,et al.  Rapamycin selectively inhibits translation of mRNAs encoding elongation factors and ribosomal proteins. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[133]  Annick Harel-Bellan,et al.  The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation , 2006, Nature Cell Biology.

[134]  W. Filipowicz,et al.  Relief of microRNA-Mediated Translational Repression in Human Cells Subjected to Stress , 2006, Cell.

[135]  A. Sood,et al.  MicroRNA therapeutics: principles, expectations, and challenges , 2011, Chinese journal of cancer.

[136]  J. Steitz,et al.  Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation , 2007, Science.

[137]  E. Izaurralde,et al.  Getting to the Root of miRNA-Mediated Gene Silencing , 2008, Cell.

[138]  E. Bocchi,et al.  MicroRNAs: a new paradigm in the treatment and diagnosis of heart failure? , 2012, Arquivos brasileiros de cardiologia.

[139]  M. Sheets,et al.  Limiting Ago protein restricts RNAi and microRNA biogenesis during early development in Xenopus laevis. , 2011, Genes & development.

[140]  Takayuki Murata,et al.  MicroRNA Inhibition of Translation Initiation in Vitro by Targeting the Cap-Binding Complex eIF4F , 2007, Science.

[141]  A. Carroll,et al.  Understanding principles of miRNA target recognition and function through integrated biological and bioinformatics approaches , 2014, Wiley interdisciplinary reviews. RNA.

[142]  A. Komar,et al.  The Zipper Model of Translational Control A Small Upstream ORF Is the Switch that Controls Structural Remodeling of an mRNA Leader , 2003, Cell.

[143]  Ayla Orang,et al.  Insights into the diverse roles of miR-205 in human cancers. , 2014, Asian Pacific journal of cancer prevention : APJCP.

[144]  Brian D Athey,et al.  New class of microRNA targets containing simultaneous 5'-UTR and 3'-UTR interaction sites. , 2009, Genome research.

[145]  E. Li,et al.  miR-145 inhibits osteosarcoma cells proliferation and invasion by targeting ROCK1 , 2014, Tumor Biology.

[146]  L. Lim,et al.  A microRNA component of the p53 tumour suppressor network , 2007, Nature.

[147]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[148]  G. Favre,et al.  HuR-dependent loading of miRNA RISC to the mRNA encoding the Ras-related small GTPase RhoB controls its translation during UV-induced apoptosis , 2011, Cell Death and Differentiation.

[149]  Jun Yu,et al.  A Brief Review on the Mechanisms of miRNA Regulation , 2009, Genom. Proteom. Bioinform..

[150]  J. Steitz,et al.  Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR , 2007, Proceedings of the National Academy of Sciences.

[151]  Edouard Bertrand,et al.  Exportin-5 Mediates Nuclear Export of Minihelix-containing RNAs* , 2003, The Journal of Biological Chemistry.

[152]  L. Bowman,et al.  Transcriptional and translational regulation of ribosomal protein formation during mouse myoblast differentiation. , 1987, The Journal of biological chemistry.

[153]  G. Hannon,et al.  Processing of primary microRNAs by the Microprocessor complex , 2004, Nature.

[154]  C. Burge,et al.  Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. , 2004, RNA.

[155]  C. Croce,et al.  miRNAs, Cancer, and Stem Cell Division , 2005, Cell.

[156]  Ying Feng,et al.  Supplemental Data P53-mediated Activation of Mirna34 Candidate Tumor-suppressor Genes , 2022 .

[157]  A. Bradley,et al.  Identification of mammalian microRNA host genes and transcription units. , 2004, Genome research.

[158]  H. Ruohola-Baker,et al.  Stem cell division is regulated by the microRNA pathway , 2005, Nature.

[159]  M. Hatzoglou,et al.  Regulation of cationic amino acid transport: the story of the CAT-1 transporter. , 2004, Annual review of nutrition.

[160]  L. I. Slobin,et al.  Regulation of the utilization of mRNA for eucaryotic elongation factor Tu in Friend erythroleukemia cells , 1987, Molecular and cellular biology.

[161]  Noam Shomron,et al.  MicroRNA-Biogenesis and Pre-mRNA Splicing Crosstalk , 2009, Journal of biomedicine & biotechnology.

[162]  N. Rajewsky,et al.  A pancreatic islet-specific microRNA regulates insulin secretion , 2004, Nature.

[163]  Kotb Abdelmohsen,et al.  Posttranscriptional gene regulation by long noncoding RNA. , 2013, Journal of molecular biology.

[164]  Jeffrey Wilusz,et al.  The highways and byways of mRNA decay , 2007, Nature Reviews Molecular Cell Biology.

[165]  Jian-Fu Chen,et al.  The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation , 2006, Nature Genetics.

[166]  R. Heintzmann,et al.  A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies. , 2005, RNA.

[167]  Shobha Vasudevan,et al.  Cell cycle control of microRNA-mediated translation regulation , 2008, Cell cycle.

[168]  U. A. Ørom,et al.  MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. , 2008, Molecular cell.

[169]  Semih Ekimler,et al.  Computational Methods for MicroRNA Target Prediction , 2014, Genes.

[170]  Olivier Voinnet,et al.  Revisiting the principles of microRNA target recognition and mode of action , 2009, Nature Reviews Molecular Cell Biology.

[171]  Hongliang Zhu,et al.  Arabidopsis Argonaute10 Specifically Sequesters miR166/165 to Regulate Shoot Apical Meristem Development , 2011, Cell.

[172]  Reuven Agami,et al.  RNA-Binding Protein Dnd1 Inhibits MicroRNA Access to Target mRNA , 2007, Cell.

[173]  C. Novina,et al.  MicroRNA-repressed mRNAs contain 40S but not 60S components , 2008, Proceedings of the National Academy of Sciences.

[174]  S. Peltz,et al.  The cap-to-tail guide to mRNA turnover , 2001, Nature Reviews Molecular Cell Biology.

[175]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[176]  Catherine L Jopling,et al.  Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome. , 2008, Cell host & microbe.

[177]  C. Croce,et al.  MicroRNA genes are frequently located near mouse cancer susceptibility loci , 2007, Proceedings of the National Academy of Sciences.