The isotropic shear modulus of multicomponent Fe-base solid solutions

Abstract A critical analysis of the available experimental data for the effect of alloying elements on the isotropic shear modulus of bcc (body-centered cube) Fe–X (X=Al, Be, C, Co, Cr, Ge, Ir, Mn, Ni, Pt, Re, Rh, Ru, Si and V) solid solutions is carried out. The total effect of a solute on the shear modulus is decomposed into two contributions: the electronic (or chemical) and the volumetric. A systematic trend of the electronic contribution is demonstrated as a function of electron-to-atom (e/a) ratio and the ground-state electronic configuration of the solute atom. Based on the demonstrated trend, we predict the chemical contribution of the shear modulus of Cu, Mo, N, Nb, Ti and W in ferromagnetic α-Fe (bcc), and that of Ti and V in paramagnetic γ-Fe [face-centered cube (fcc)]. These along with the corresponding volumetric contributions enable us to predict the total effect of a solute on the shear modulus in α-Fe and γ-Fe. In the case of γ-Fe, we derive the chemical and volumetric contributions of Ni and Pt from the experimental shear modulus data of paramagnetic Fe–Ni and Fe–Pt alloys while those of C, Co, Cr, Mn, Mo, N and Si are derived from the shear modulus of paramagnetic Fe–Ni–X alloys. In the case of Al, Be, Cu, Ge, Ir, Nb, Re, Rh , Ru and W, the total effect on the shear modulus is calculated by assuming that the electronic contribution to the shear modulus in γ-Fe is the same as in α-Fe. To calculate the isotropic shear modulus of multicomponent bcc and fcc solid solutions, we propose linear superposition laws. The proposed relationships are validated using the experimental data of a large number of multicomponent alloys having austenitic, ferritic, and lath martensitic microstructures. It is demonstrated that for all three microstructures, in most cases the shear modulus can be predicted with an accuracy of ±3% in multicomponent solid solutions. It is also found that the high dislocation density in lath martensite accounts for a decrease in shear modulus by about 5% compared to the ferritic counterpart. We also demonstrate that the temperature dependence of shear modulus in multicomponent bcc and fcc solid solutions is similar to that of pure α- and γ-Fe, respectively, for up to about 800 K.

[1]  D. Pettifor A Quantum-Mechanical Critique of the Miedema Rules for Alloy Formation , 1987 .

[2]  K.H.J. Buschow,et al.  Magneto-optical properties of metallic ferromagnetic materials , 1983 .

[3]  W. Voigt,et al.  Lehrbuch der Kristallphysik , 1966 .

[4]  S. Takeuchi Solid-Solution Strengthening in Single Crystals of Iron Alloys , 1969 .

[5]  D. Esterling,et al.  Interatomic potentials from experimental phonon spectra I. Prototypes , 1979 .

[6]  A. Miedema,et al.  Cohesion in alloys — fundamentals of a semi-empirical model , 1980 .

[7]  E. A. Owen,et al.  An X-ray investigation of pure iron-nickel alloys. Part 3: the thermal expansion of alloys rich in iron , 1937 .

[8]  Y. Bandō,et al.  鉄-コバルト合金微粒子における規則-不規則変態 , 1966 .

[9]  P. Royen,et al.  Die Beeinflussung des Oxydationsgleichgewichtes von Eisen durch Zusätze von Gold, Silber, Kupfer oder Nickel , 1955 .

[10]  G. Speich,et al.  Effects of Co, Cr, Ir, Pt, Re, Rh, and Ru on the lattice parameter and density of alpha iron , 1973 .

[11]  Zarestky,et al.  Lattice dynamics of gamma -Fe. , 1987, Physical review. B, Condensed matter.

[12]  E. Kröner Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .

[13]  L. W. Mckeehan The Crystal Structure of Iron-Nickel Alloys , 1923 .

[14]  N. Singh Lattice Dynamics of γ‐Iron at 1428 K , 1989 .

[15]  H. Chessin,et al.  Paramagnetism and lattice parameters of iron-rich iron-germanium alloys , 1963 .

[16]  John R. Smith,et al.  Universal features of bonding in metals , 1983 .

[17]  D. S. Hughes,et al.  Dynamic Elastic Moduli of Iron, Aluminum, and Fused Quartz , 1956 .

[18]  Joshua R. Smith,et al.  Universal binding-energy relation in chemisorption , 1982 .

[19]  G. Speich,et al.  Elastic constants of binary iron-base alloys , 1972 .

[20]  A. Sully XXXI. On the migration of atoms in iron-nickel alloys , 1941 .

[21]  A. J. Goldman,et al.  Elastic properties of austenite and martensite in iron-nickel alloys , 1964 .

[22]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[23]  J. Rayne,et al.  Elastic Constants of Iron from 4.2 to 300°K , 1961 .

[24]  Gregory B Olson,et al.  Computational thermodynamics and the kinetics of martensitic transformation , 2001 .

[25]  N. Mott CXVII. A theory of work-hardening of metal crystals , 1952 .

[26]  M. S. Singh,et al.  Phonon spectra and isothermal elastic constants of transition metals: A dynamical treatment. , 1988, Physical review. B, Condensed matter.

[27]  Leo Brewer,et al.  A most striking confirmation of the Engel metallic correlation , 1967 .

[28]  A. E. Lord,et al.  Elastic Stiffness Coefficients of Single‐Crystal Iron from Room Temperature to 500°C , 1968 .

[29]  H. Hahn,et al.  Metallamide und Metallnitride, 20. Mitteilung. Das System Eisen/Nickel/Stickstoff , 1949 .

[30]  John Taunton Esq. LVII. Report of surgical cases in the City and Finsbury Dispensaries, for February and March 1808 , 1808 .

[31]  William Hume-Rothery,et al.  The structure of metals and alloys , 1939 .

[32]  J. Wills,et al.  Interionic interactions in transition metals , 1983 .

[33]  A. J. Goldman,et al.  Faulting in deformed austenite and martensite , 1963 .

[34]  G. Hausch Elastic Constants of Fe–Pt Alloys. I. Single Crystalline Elastic Constants of Fe 72 Pt 28 , 1974 .

[35]  Olson,et al.  Energetics of bcc-fcc lattice deformation in iron. , 1989, Physical review. B, Condensed matter.

[36]  A. H. S. M.Sc LVI. The equilibrium diagram of iron-nickel alloys , 1939 .

[37]  Jan-Olof Andersson,et al.  The Thermo-Calc databank system☆ , 1985 .

[38]  M. Eberhart The metallic bond: Elastic properties , 1996 .

[39]  A. Granato,et al.  Theory of Mechanical Damping Due to Dislocations , 1956 .

[40]  D. J. Dever,et al.  Temperature dependence of the elastic constants in α‐iron single crystals: relationship to spin order and diffusion anomalies , 1972 .

[41]  N. Ridley,et al.  Lattice parameters and Curie-point anomalies of iron-cobalt alloys , 1969 .

[42]  R. E. Schramm,et al.  Lattice Parameters of Martensite and Austenite in Fe–Ni Alloys , 1969 .

[43]  W. Hume-rothery,et al.  CXLI. The lattice spacings of solid solutions of titanium, vanadium, chromium, manganese, cobalt and nickel in α-iron , 1955 .