Confined fluids in the Earth's crust — Properties and processes

[1]  C. Spiers,et al.  Structure and diffusive properties of fluid-filled grain boundaries: An in-situ study using infrared (micro) spectroscopy , 2005 .

[2]  W. Griffin,et al.  Distribution of high field strength and rare earth elements in mantle and lower crustal xenoliths from the southwestern United States: The role of grain-boundary phases , 2004 .

[3]  F. Bresme,et al.  Liquids confined in wedge shaped pores: nonuniform pressure induced by pore geometry. , 2004, The Journal of chemical physics.

[4]  C. Peach,et al.  Electrical properties of fine-grained olivine: Evidence for grain boundary transport , 2004 .

[5]  J. Urai,et al.  Microstructural evolution and grain boundary structure during static recrystallization in synthetic polycrystals of Sodium Chloride containing saturated brine , 2004 .

[6]  F. Bresme,et al.  Molecular dynamics simulations of crystallization under confinement at triple point conditions , 2003 .

[7]  J. Feder,et al.  High-resolution measurements of pressure solution creep. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  M. Holness Growth and albitization of K‐feldspar in crystalline rocks in the shallow crust: a tracer for fluid circulation during exhumation? , 2003 .

[9]  F. Freund,et al.  On the electrical conductivity structure of the stable continental crust , 2003 .

[10]  François Renard,et al.  Modeling fluid transfer along California faults when integrating pressure solution crack sealing and compaction processes , 2003 .

[11]  J. Feder,et al.  Universal scaling in transient creep. , 2002, Physical review letters.

[12]  S. Nakashima,et al.  Water distribution in low-grade siliceous metamorphic rocks by micro-FTIR and its relation to grain size: a case from the Kanto Mountain region, Japan , 2002 .

[13]  S. Crampin,et al.  New techniques for stress‐forecasting earthquakes , 2002 .

[14]  C. Peach,et al.  Diffusive properties of fluid-filled grain boundaries measured electrically during active pressure solution , 2002 .

[15]  François Renard,et al.  Fluid in mineral interfaces—molecular simulations of structure and diffusion , 2002 .

[16]  Christopher J. Spiers,et al.  Effect of confining pressure on dilatation, recrystallization, and flow of rock salt at 150°C , 2001 .

[17]  M. Paterson,et al.  Microcrack growth and healing in deformed calcite aggregates , 2001 .

[18]  M. Herwegh,et al.  Granular flow in polymineralic rocks bearing sheet silicates: new evidence from natural examples , 2001 .

[19]  Y. Takei Stress‐induced anisotropy of partially molten media inferred from experimental deformation of a simple binary system under acoustic monitoring , 2001 .

[20]  A. Provost,et al.  Equilibrium geometry of a fluid phase in a polycrystalline aggregate with anisotropic surface energies: Dry grain boundaries , 2000 .

[21]  François Renard,et al.  Kinetics of crack-sealing, intergranular pressure solution, and compaction around active faults , 2000 .

[22]  Graham D. Williams,et al.  The structure of pore fluids in swelling clays at elevated pressures and temperatures , 1999 .

[23]  George W. Scherer,et al.  Crystallization in pores , 1999 .

[24]  G. Manatschal Fluid- and reaction-assisted low-angle normal faulting: evidence from rift-related brittle fault rocks in the Alps (Err Nappe, eastern Switzerland) , 1999 .

[25]  Yehuda Ben-Zion,et al.  A three‐dimensional fluid‐controlled earthquake model: Behavior and implications , 1999 .

[26]  Paul A. Johnson,et al.  Hysteresis and the Dynamic Elasticity of Consolidated Granular Materials , 1999 .

[27]  S. W. Brok Effect of microcracking on pressure-solution strain rate: The Gratz grain-boundary model , 1998 .

[28]  K. Van Den Abeele,et al.  Slow elastic dynamics in a resonant bar of rock , 1998 .

[29]  A. Duba,et al.  Increase of electrical conductivity with pressure as an indicator of conduction through a solid phase in midcrustal rocks , 1997 .

[30]  B. Stöckhert,et al.  Pressure solution in siliciclastic HP-LT metamorphic rocks — constraints on the state of stress in deep levels of accretionary complexes , 1996 .

[31]  J. Gerald,et al.  Grain boundary melt films in an experimentally deformed olivine‐orthopyroxene rock: Implications for melt distribution in upper mantle rocks , 1996 .

[32]  P. Coveney,et al.  Molecular Modeling of Clay Hydration: A Study of Hysteresis Loops in the Swelling Curves of Sodium Montmorillonites , 1995 .

[33]  F. Spear,et al.  Intergranular diffusion kinetics of Fe and Mg during retrograde metamorphism of a pelitic gneiss from the Adirondack Mountains , 1995 .

[34]  G. Sposito,et al.  Monte Carlo Simulation of Interlayer Molecular Structure in Swelling Clay Minerals. 1. Methodology , 1995 .

[35]  G. Sposito,et al.  Monte Carlo Simulation of Interlayer Molecular Structure in Swelling Clay Minerals. 2. Monolayer Hydrates , 1995 .

[36]  J. Ree Grain boundary sliding and development of grain boundary openings in experimentally deformed octachloropropane , 1994 .

[37]  J. E. Russell,et al.  Rheology of rocksalt , 1993 .

[38]  Poirier,et al.  Experimental study of the geometrical effects in the localization of deformation. , 1992, Physical review letters.

[39]  J. Valley,et al.  Steep oxygen-isotope gradients at marble—metagranite contacts in the northwest Adirondack Mountains, New York, USA: products of fluid-hosted diffusion , 1991 .

[40]  S. W. Brok,et al.  Experimental evidence for water weakening of quartzite by microcracking plus solution–precipitation creep , 1991, Journal of the Geological Society.

[41]  J. Israelachvili,et al.  Liquid dynamics in molecularly thin films , 1990 .

[42]  J. H. Cushman,et al.  Shear Forces in Molecularly Thin Films , 1989, Science.

[43]  L. E. Scriven,et al.  Molecular theories of confined fluids , 1989 .

[44]  J. Israelachvili,et al.  Dynamic Properties of Molecularly Thin Liquid Films , 1988, Science.

[45]  P. Tarazona,et al.  Phase equilibria of fluid interfaces and confined fluids , 1987 .

[46]  R. Ottewill,et al.  Neutron Diffraction from Clay-Water Systems , 1979 .

[47]  Robert L. Coble,et al.  A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials , 1963 .

[48]  P. K. Weyl Pressure solution and the force of crystallization: a phenomenological theory , 1959 .

[49]  M. Heald Cementation of Simpson and St. Peter Sandstones in Parts of Oklahoma, Arkansas, and Missouri , 1956, The Journal of Geology.

[50]  Sheila Peacock,et al.  A review of shear-wave splitting in the compliant crack-critical anisotropic earth , 2005 .

[51]  S. Ikeda,et al.  Experimental study of the textural development of igneous rocks in the late stage of crystallization: the importance of interfacial energies under non-equilibrium conditions , 2002 .

[52]  C. Peach,et al.  Electrical impedance measurement of plastically deforming halite rocks at 125°C and 50 MPa , 2002 .

[53]  R. Yund,et al.  Grain boundary diffusion of oxygen, potassium and calcium in natural and hot-pressed feldspar aggregates , 1995 .

[54]  G. Dresen,et al.  Deformation of Earth Materials: Six Easy Pieces , 1991 .

[55]  R. Evans,et al.  The density profile of a confined fluid , 1988 .

[56]  R. Raj,et al.  Solution-precipitation creep in glass ceramics , 1981 .

[57]  J. Israelachvili,et al.  Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm , 1978 .