Tile Formats for Located and Mobile Systems

Abstract Standard SOS formats are limited in their ability to define the operational semantics of process calculi with concurrency, causality, and mobility, and with bound names and name generation mechanisms. In this paper we describe a general approach, based on the tile model, to the definition of the operational semantics of process calculi. By providing tile systems for located CCS and asynchronous π -calculus we demonstrate that the proposed approach is more suited than SOS to provide a uniform treatment of concurrency and mobility within a compositional framework.

[1]  Irek Ulidowski,et al.  Axiomatisations of Weak Equivalences for De Simone Languages , 1995, CONCUR.

[2]  José Meseguer,et al.  Conditioned Rewriting Logic as a United Model of Concurrency , 1992, Theor. Comput. Sci..

[3]  Ugo Montanari,et al.  Location Equivalence in Parametric Setting , 1995, Theor. Comput. Sci..

[4]  Jan Friso Groote Transition System Specifications with Negative Premises (Extended Abstract) , 1990, CONCUR.

[5]  Fabio Gadducci,et al.  The tile model , 2000, Proof, Language, and Interaction.

[6]  David Walker,et al.  Objects in the pi-Calculus , 1992, Inf. Comput..

[7]  Ilaria Castellani,et al.  Flow Models of Distributed Computations: Three Equivalent Semantics for CCS , 1994, Inf. Comput..

[8]  Davide Sangiorgi,et al.  Expressing mobility in process algebras : first-order and higher-order paradigms , 1993 .

[9]  Matthew Hennessy,et al.  Observing Localities , 1993, Theor. Comput. Sci..

[10]  Xinxin Liu,et al.  Compositionality through an Operational Semantics of Contexts , 1990, J. Log. Comput..

[11]  Fabio Gadducci,et al.  An Algebraic Presentation of Term Graphs, via GS-Monoidal Categories , 1999, Appl. Categorical Struct..

[12]  Roberto Gorrieri,et al.  On the Implementation of Concurrent Calculi in Net Calculi: Two Case Studies , 1995, Theor. Comput. Sci..

[13]  Philippe Darondeau,et al.  Causal Trees , 1989, ICALP.

[14]  Marco Pistore,et al.  Efficient Minimization up to Location Equivalence , 1996, ESOP.

[15]  Cosimo Laneve,et al.  Axiomatizing permutation equivalence , 1996, Mathematical Structures in Computer Science.

[16]  Karen L. Bernstein A congruence theorem for structured operational semantics of higher-order languages , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[17]  Gian Luigi Ferrari,et al.  Towards the Unification of Models for Concurrency , 1990, CAAP.

[18]  Luca Aceto,et al.  CPO Models for Compact GSOS Languages , 1996, Inf. Comput..

[19]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[20]  Mario Tokoro,et al.  An Object Calculus for Asynchronous Communication , 1991, ECOOP.

[21]  Davide Sangiorgi,et al.  On Bisimulations for the Asynchronous pi-Calculus , 1996, Theor. Comput. Sci..

[22]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[23]  Rocco De Nicola,et al.  Distribution and Locality of Concurrent Systems , 1994, ICALP.

[24]  Ugo Montanari,et al.  Can Actors and pi-Agents Live Together? , 1998, HOOTS.

[25]  Arend Rensink Bisimilarity of open terms , 1997, EXPRESS.

[26]  Frits W. Vaandrager,et al.  Expressiveness results for process algebras , 1993 .

[27]  Jan Friso Groote,et al.  Structured Operational Semantics and Bisimulation as a Congruence , 1992, Inf. Comput..

[28]  Peter Sewell,et al.  From Rewrite to Bisimulation Congruences , 1998, CONCUR.

[29]  Gian Luigi Ferrari,et al.  Tiles for concurrent and located calculi? , 1999, EXPRESS.

[30]  Roberto Bruni,et al.  Zero-safe nets, or transition synchronization made simple , 1997, EXPRESS.

[31]  Bard Bloom,et al.  Structural Operational Semantics for Weak Bisimulations , 1995, Theor. Comput. Sci..

[32]  Frits W. Vaandrager,et al.  Turning SOS Rules into Equations , 1994, Inf. Comput..

[33]  Ugo Montanari,et al.  Graph grammars and constraint solving for software architecture styles , 1998, ISAW '98.

[34]  F. W. Lawvere,et al.  FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Luca Aceto,et al.  Deriving Complete Inference Systems for a Class of GSOS Languages Generation Regular Behaviours , 1994, CONCUR.

[36]  Fabio Gadducci,et al.  Relating Two Categorial Models of Term Rewriting , 1995, RTA.

[37]  Fabio Gadducci,et al.  Tiles, rewriting rules and CCS , 1996, WRLA.

[38]  Robert de Simone,et al.  Higher-Level Synchronising Devices in Meije-SCCS , 1985, Theor. Comput. Sci..

[39]  Jos C. M. Baeten,et al.  A Congruence Theorem for Structured Operational Semantics with Predicates , 1993, CONCUR.

[40]  Rocco De Nicola,et al.  Partial orderings descriptions and observations of nondeterministic concurrent processes , 1988, REX Workshop.

[41]  Horst Herrlich,et al.  Category theory , 1979 .

[42]  Davide Sangiorgi,et al.  On Bisimulations for the Asynchronous pi-Calculus , 1996, Theor. Comput. Sci..

[43]  Francesca Rossi,et al.  Graph Rewriting, Constraint Solving and Tiles for Coordinating Distributed Systems , 1999, Appl. Categorical Struct..

[44]  Paola Inverardi,et al.  Modeling Software Architecutes and Styles with Graph Grammars and Constraint Solving , 1999, WICSA.

[45]  Fabio Gadducci,et al.  On The Algebraic Approach To Concurrent Term Rewriting , 1996 .

[46]  Fabio Gadducci,et al.  Axioms for Contextual Net Processes , 1998, ICALP.

[47]  José Meseguer,et al.  Mapping tile logic into rewriting logic , 1997, WADT.

[48]  Fabio Gadducci,et al.  A 2-Categorical Presentation of Term Graph Rewriting , 1997, Category Theory and Computer Science.