Liquid Immiscibility and Problems of Ore Genesis: Experimental Data

[1]  V. V. Ananiev,et al.  Liquid Immiscibility in Fluid–Magmatic Systems: An Experimental Study , 2019, Petrology.

[2]  Z. Kotelnikova,et al.  Effect of Silicate Matter on Pyrochlore Solubility in Fluoride Solutions at Т = 550–850°C, Р = 50–100 MPa (Experimental Studies) , 2018, Doklady Earth Sciences.

[3]  V. M. Batenin,et al.  Coexistence of two immiscible liquid phases in a niobium–rareearth element–silicate–salt system , 2015, Doklady Chemistry.

[4]  S. Salami,et al.  The study of petrogenesis, mineral chemistry and thermobarometry of contact metamorphic rocks from aureole of Alvand body, Hamedan , 2014 .

[5]  N. Suk,et al.  Crystallization of loparite in alkaline fluid-magmatic systems (from experimental and mineralogical data) , 2013 .

[6]  N. Suk Experimental study of liquid immiscibility in the fluid-magmatic silicate systems containing Ti, Nb, Sr, REE, and Zr , 2012, Petrology.

[7]  Y. Alferyeva,et al.  Experimental study of phase relations in a lithium-bearing fluorine-rich haplogranite and nepheline syenite system , 2011 .

[8]  V. Chevychelov,et al.  Solubility of columbite, (Mn, Fe)(Nb, Ta)2O6, in granitoid and alkaline melts at 650–850°C and 30–400 MPa: An experimental investigation , 2010 .

[9]  V. Chevychelov,et al.  Experimental study of partitioning of tantalum, niobium, manganese, and fluorine between aqueous fluoride fluid and granitic and alkaline melts , 2009 .

[10]  A. R. Kotel’nikov,et al.  Experimental study of loparite formation in complex fluid-magmatic systems , 2008 .

[11]  N. Suk Experimental study of alkaline magmatic aluminosilicate systems: Implication for the genesis of REE-Nb loparite deposits , 2007 .

[12]  S. Reed Electron Microprobe Analysis and Scanning Electron Microscopy in Geology: Frontmatter , 2005 .

[13]  E. Badanina,et al.  Model for the genesis of Li-F granites in the Orlovka Massif, eastern Transbaikalia , 2001 .

[14]  D. Dingwell,et al.  Trace Element Partitioning in Immiscible Silicate–Carbonate Liquid Systems: an Initial Experimental Study Using a Centrifuge Autoclave , 1998 .

[15]  J. Webster Exsolution of magmatic volatile phases from Cl-enriched mineralizing granitic magmas and implications for ore metal transport , 1997 .

[16]  S. Reed Electron Microprobe Analysis and Scanning Electron Microscopy in Geology , 1996 .

[17]  J. Webster Water solubility and chlorine partitioning in Cl-rich granitic systems: Effects of melt composition at 2 kbar and 800°C , 1992 .

[18]  B. Kjarsgaard,et al.  Liquid immiscibility and the origin of alkali-poor carbonatites , 1988, Mineralogical Magazine.

[19]  I. Freestone,et al.  The role of liquid immiscibility in the genesis of carbonatites — An experimental study , 1980 .

[20]  E. Roedder Silicate liquid immiscibility in magmas and in the system K2O-FeO-AI2O3-SiO2: an example of serendipity , 1978 .

[21]  A. K. V. Groos The distribution of strontium between coexisting silicate and carbonate liquids at elevated pressures and temperatures , 1975 .

[22]  A. K. V. Groos,et al.  Liquid Immiscibility in Silicates , 1973 .

[23]  A. K. V. Groos,et al.  Liquid immiscibility in the join NaAlSi 3 O 8 -CaAl 2 Si 2 O 8 -Na 2 CO 3 -H 2 O , 1973 .

[24]  A. Philpotts Immiscibility between Feldspathic and Gabbroic Magmas , 1971 .

[25]  J. W. Creig Immiscibility in silicate melts; Part II , 1927 .