Four-channel interferometry with a zig-zag array of mid-infrared integrated waveguides

We present the laboratory characterisation of the first working, mid-infrared, integrated optics, 4-channel interferometric beam combiner based on the properties of two-dimensional arrays of evanescently coupled waveguides. Potential applications of the component to astronomy, biology and quantum optics are proposed and discussed.

[1]  Lucas Labadie,et al.  Ultrafast laser inscription of mid-IR directional couplers for stellar interferometry. , 2014, Optics letters.

[2]  Thomas Pertsch,et al.  Three-dimensional photonic component for multichannel coherence measurements. , 2012, Optics letters.

[3]  E. Tatulli,et al.  AMBER : Instrument description and first astrophysical results Special feature Interferometric data reduction with AMBER / VLTI . Principle , estimators , and illustration , 2007 .

[4]  Romain Petrov,et al.  Imaging the spinning gas and dust in the disc around the supergiant A[e] star HD 62623 , 2010, 1012.2957.

[5]  Yonina C Eldar,et al.  Sparsity-based Super-resolution and Phase-retrieval in Waveguide Arrays References and Links , 2022 .

[6]  A. Delboulbé,et al.  Characterization of integrated optics components for the second generation of VLTI instruments , 2008, Astronomical Telescopes + Instrumentation.

[7]  Thomas Pertsch,et al.  Interferometric beam combination with discrete optics. , 2010, Optics letters.

[8]  Stefano Minardi,et al.  Photonic lattices for astronomical interferometry , 2011, 1108.0849.

[9]  Andreas Tünnermann,et al.  Second-order coupling in femtosecond-laser-written waveguide arrays. , 2008, Optics letters.

[10]  Laurent Jocou,et al.  An integrated optics beam combiner for the second generation VLTI instruments , 2009, 0902.2442.

[11]  Lucas Labadie,et al.  All-in-one 4-telescope beam combination with a zig-zag array of waveguides , 2016, Astronomical Telescopes + Instrumentation.

[12]  Yonina C. Eldar,et al.  Sparsity-based recovery of three-photon quantum states from two-fold correlations , 2016 .

[13]  Aurel Ymeti,et al.  Realization of a multichannel integrated Young interferometer chemical sensor. , 2003, Applied optics.

[14]  William H. Press,et al.  Numerical recipes in C , 2002 .

[15]  Eric Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[16]  Stefan Nolte,et al.  Structural modification of gallium lanthanum sulfide glass induced by ultrafast laser inscription , 2017, LASE.

[17]  Stefano Minardi Nonlocality of coupling and the retrieval of field correlations with arrays of waveguides , 2015 .

[18]  Thomas Pertsch,et al.  Astrointerferometry with discrete optics , 2010, 1005.5000.

[19]  Gregor Weihs,et al.  Direct measurement of second-order coupling in a waveguide lattice , 2015, 1510.07900.

[20]  K. Itoh,et al.  Ultrafast Processes for Bulk Modification of Transparent Materials , 2006 .

[21]  Animesh Jha,et al.  Three-dimensional mid-infrared photonic circuits in chalcogenide glass. , 2012, Optics letters.

[22]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[23]  S. Nolte,et al.  3D-integrated optics component for astronomical spectro-interferometry. , 2013, Applied optics.

[24]  James G. Titchener,et al.  Two-photon tomography using on-chip quantum walks. , 2016, Optics letters.

[25]  Stefano Minardi,et al.  6- and 8-telescope discrete beam combiners , 2016, Astronomical Telescopes + Instrumentation.

[26]  Yaron Silberberg,et al.  Discretizing light behaviour in linear and nonlinear waveguide lattices , 2003, Nature.