Motion compensated reconstruction for myocardial perfusion MRI

Background Classical acceleration schemes for myocardial perfusion MRI like view sharing, k-t BLAST [Tsao et al. ‘03] are sensitive to motion artifacts which could arise in data with inconsistent gating and/or breathing motion. A natural approach to be robust to this is to estimate the motion and compensate for it during the recovery; to this end we proposed a novel joint motion estimation and reconstruction scheme in [Lingala et al. ‘11]. One goal of this work is to further validate it by recovering such data at considerable accelerations (R). In a 2nd goal, we apply it to recover images acquired with an ungated protocol [DiBella et al. ‘11]. This obtains data at a rapid rate without any gating to provide robustness to beat-beat variability. It also offers a high temporal resolution (~50ms), which ensures maximal information is obtained during the brief first pass. This resolution also means the cardiac motion is captured, akin to cine imaging. Here, we aim to benefit the reconstructions by compensating for this motion. We show its utility by comparisons with standard gridding reconstruction (GR) and sliding window (SW) algorithm.