Semigroup representations of the Poincaré group and relativistic Gamow vectors

[1]  A. Bohm,et al.  Quantum theory in the rigged hilbert space — Irreversibility from causality , 1998, quant-ph/9805063.

[2]  A. Bohm,et al.  Quantum mechanical irrebersibility , 1997 .

[3]  R. Stuart Model-independent representation of electroweak data , 1996, hep-ph/9602300.

[4]  Jonathan J. Halliwell,et al.  Physical origins of time asymmetry , 1995 .

[5]  W. Ebeling,et al.  Physical Origins of Time Asymmetry , 1995 .

[6]  A. Bohm,et al.  The preparation-registration arrow of time in quantum mechanics , 1994 .

[7]  H. Georgi,et al.  Heavy meson form factors from QCD , 1990 .

[8]  Rudolf Haag,et al.  Fundamental irreversibility and the concept of events , 1990 .

[9]  Manuel Gadella,et al.  Dirac Kets, Gamow Vectors and Gel'fand triplets : the rigged Hilbert space formulation of quantum mechanics : lectures in mathematical physics at the University of Texas at Austin , 1989 .

[10]  Manuel Gadella,et al.  A rigged Hilbert space of Hardy‐class functions: Applications to resonances , 1983 .

[11]  L. Biedenharn,et al.  Kinematics of a Poincaré-covariant object having indecomposable internal structure , 1976 .

[12]  A. Bohm Ponicaré group, V − A , and SU(3) as spectrum-generating group in leptonic decays , 1976 .

[13]  A. Bohm,et al.  SU(3) symmetry in leptonic decays of pseudoscalar mesons , 1976 .

[14]  A. Boehm Derivation of the Mass and Spin Spectrum for Mesons and Baryons , 1968 .

[15]  Paul Roman,et al.  The Analytic S-Matrix , 1967 .

[16]  H. Joos Zur Darstellungstheorie der inhomogenen Lorentzgruppe als Grundlage quantenmechanischer Kinematik , 2006 .

[17]  A. Macfarlane Relativistic Partial Wave Analysis , 1962 .

[18]  W. Zimmermann Analytic behavior of the scattering amplitude at zero energy , 1961 .

[19]  L. Infeld Quantum Theory of Fields , 1949, Nature.

[20]  Eugene P. Wigner,et al.  80 Years of Professor Wigner's Seminal Work "On Unitary Representations of the Inhomogeneous Lorentz Group" , 2021 .