Capillary electrophoresis-SELEX selection of catalytic DNA aptamers for a small-molecule porphyrin target.

Capillary electrophoresis-systematic evolution of ligands by exponential enrichment (CE-SELEX) has previously been used to select aptamers for large-molecule targets such as proteins, lipopolysaccharides, and peptides. For the first time, we have performed CE-SELEX selection for a small-molecule target, N-methyl mesoporphyrin (NMM), with a molecular weight of only 580 g/mol. DNA aptamers with high-nanomolar to low-micromolar dissociation constants were achieved after only three rounds of selection. This corresponds to an >50-fold improvement in affinity over the random library. Two out of eight randomly chosen aptamers were found to catalyze the metal insertion reaction of mesoporphyrin with 1.7- and 2.0-fold rate enhancements, respectively.

[1]  M. Bowser,et al.  In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis. , 2004, Analytical chemistry.

[2]  P. Bolton,et al.  Fluorescent dyes specific for quadruplex DNA. , 1998, Nucleic acids research.

[3]  M. Bowser,et al.  In vitro evolution of functional DNA using capillary electrophoresis. , 2004, Journal of the American Chemical Society.

[4]  Xiaogang Qu,et al.  A label-free, quadruplex-based functional molecular beacon (LFG4-MB) for fluorescence turn-on detection of DNA and nuclease. , 2011, Chemistry.

[5]  J. Kinet,et al.  High-affinity oligonucleotide ligands to human IgE inhibit binding to Fc epsilon receptor I. , 1996, Journal of immunology.

[6]  S. Jayasena Aptamers: an emerging class of molecules that rival antibodies in diagnostics. , 1999, Clinical chemistry.

[7]  E. Snyder,et al.  High-affinity RNA ligands to Escherichia coli ribosomes and ribosomal protein S1: comparison of natural and unnatural binding sites. , 1995, Biochemistry.

[8]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[9]  M. Yarus,et al.  Small RNA-divalent domains. , 1996, RNA.

[10]  A D Ellington,et al.  In Vitro Selection of RNA Molecules That Inhibit the Activity of Ricin A-chain* , 2000, The Journal of Biological Chemistry.

[11]  Y. Ito,et al.  In vitro selection of nonnatural ribozyme-catalyzing porphyrin metalation. , 2001, Biomacromolecules.

[12]  P. Burgstaller,et al.  Biostable aptamers with antagonistic properties to the neuropeptide nociceptin/orphanin FQ. , 2004, RNA.

[13]  Peter G. Schultz,et al.  Porphyrin metalation catalyzed by a small RNA molecule , 1996 .

[14]  Sheela M. Waugh,et al.  2′-Fluoropyrimidine RNA-based Aptamers to the 165-Amino Acid Form of Vascular Endothelial Growth Factor (VEGF165) , 1998, The Journal of Biological Chemistry.

[15]  E. Vermaas,et al.  Selection of single-stranded DNA molecules that bind and inhibit human thrombin , 1992, Nature.

[16]  M. Famulok,et al.  Oligonucleotide aptamers that recognize small molecules. , 1999, Current opinion in structural biology.

[17]  M. Siddiqui,et al.  Pegaptanib , 2012, Drugs.

[18]  M. Bowser,et al.  SELEX: just another separation? , 2005, The Analyst.

[19]  M. Bowser,et al.  Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. , 2005, Analytical chemistry.

[20]  L. Gold,et al.  In vitro selection of RNA ligands to substance P. , 1995, Biochemistry.

[21]  Yingfu Li,et al.  Recognition of anionic porphyrins by DNA aptamers. , 1996, Biochemistry.

[22]  Yi Xiao,et al.  In vitro selection of structure-switching, self-reporting aptamers , 2010, Proceedings of the National Academy of Sciences.

[23]  J. Chaires,et al.  Sequence and structural selectivity of nucleic acid binding ligands. , 1999, Biochemistry.

[24]  M. Bowser,et al.  In vitro selection of aptamers with affinity for neuropeptide Y using capillary electrophoresis. , 2005, Journal of the American Chemical Society.

[25]  Eun Jeong Cho,et al.  Optimization of aptamer microarray technology for multiple protein targets. , 2006, Analytica chimica acta.

[26]  Weihong Tan,et al.  Selection of DNA ligands for protein kinase C-delta. , 2006, Chemical communications.

[27]  D. Shangguan,et al.  Aptamers evolved from live cells as effective molecular probes for cancer study , 2006, Proceedings of the National Academy of Sciences.

[28]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[29]  M. Famulok,et al.  Nucleic acid aptamers-from selection in vitro to applications in vivo. , 2000, Accounts of chemical research.

[30]  N. Sugimoto,et al.  Reaction field for efficient porphyrin metallation catalysis produced by self-assembly of a short DNA oligonucleotide , 1998 .

[31]  J. Szostak,et al.  In vitro selection of functional nucleic acids. , 1999, Annual review of biochemistry.

[32]  M. Berezovski,et al.  Selection of smart aptamers by equilibrium capillary electrophoresis of equilibrium mixtures (ECEEM). , 2005, Journal of the American Chemical Society.

[33]  R. Kennedy,et al.  Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase. , 2001, Analytical chemistry.

[34]  Michael Musheev,et al.  Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. , 2005, Journal of the American Chemical Society.

[35]  Y. Li,et al.  Toward an efficient DNAzyme. , 1997, Biochemistry.

[36]  Dipankar Sen,et al.  A catalytic DNA for porphyrin metallation , 1996, Nature Structural Biology.

[37]  G. Tocchini-Valentini,et al.  In vitro selection of dopamine RNA ligands. , 1997, Biochemistry.

[38]  R. Kennedy,et al.  Aptamers as ligands in affinity probe capillary electrophoresis. , 1998, Analytical chemistry.

[39]  V. Hornung,et al.  Ni2+-binding RNA motifs with an asymmetric purine-rich internal loop and a G-A base pair. , 1997, RNA.

[40]  Peter G. Schultz,et al.  Antibody-catalyzed porphyrin metallation. , 1990, Science.