The electronic and molecular structure of C4: Multireference configuration‐interaction calculations

Multireference configuration‐interaction methods have been used to calculate equilibrium geometries for different C4 structures, using large basis sets of atomic natural orbitals. The ground state of C4 is found to be linear, cumulene‐like with a 3∑−g electronic state and with an energy 4.1 kcal/mol below the rhombic structure. We show that the choice of basis set plays a crucial role in the determination of the ground‐state conformation.

[1]  W. Graham,et al.  Electron‐spin‐resonance characterization of nonlinear C4 trapped in solid argon , 1989 .

[2]  B. Zabransky,et al.  Geometrical structure of carbon ion (C3 , 1987 .

[3]  R. L. Dekock,et al.  Spectroscopy of carbon molecules. IV. C4, C5, C6 (and C9) , 1971 .

[4]  David H. Magers,et al.  Stability and properties of C4 isomers , 1988 .

[5]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[6]  R. Gijbels,et al.  Ab initio study of the structure, infrared spectra, and heat of formation of C4 , 1991 .

[7]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[8]  R. Naaman,et al.  The structure of C4 as studied by the Coulomb explosion method , 1989 .

[9]  R. J. Van Zee,et al.  Electron spin resonance of the C6, C8, and C10 molecules , 1988 .

[10]  Jan Almlöf,et al.  The electronic and molecular structure of C6: Complete active space self‐consistent‐field and multireference configuration interaction , 1989 .

[11]  H. F. King,et al.  Structures and energies for C4 , 1986 .

[12]  David H. Magers,et al.  Isomers and excitation energies of C4 , 1986 .

[13]  D. McLeod,et al.  Spectroscopy of Carbon Vapor Condensed in Rare‐Gas Matrices at 4°K. III , 1966 .

[14]  Peter R. Taylor,et al.  General contraction of Gaussian basis sets. I. Atomic natural orbitals for first‐ and second‐row atoms , 1987 .

[15]  W. Graham,et al.  The C/sub 4/ molecule , 1976 .

[16]  Ivan Hubač,et al.  Correlation energy of open-shell systems. Application of the many-body Rayleigh-Schrödinger perturbation theory in the restricted Roothaan-Hartree-Fock formalism , 1980 .

[17]  Congxin Liang,et al.  Electronic structures of linear C4, C6, C8, and C10 carbon clusters and a symmetry breaking phenomenon , 1990 .

[18]  Z. Vager,et al.  An alternative interpretation of Coulomb explosion data on C3 , 1989 .

[19]  R. Gijbels,et al.  Note on the vibrational spectrum of C4 and C5 , 1989 .

[20]  M. Frisch,et al.  Cyclic C3 structures , 1981 .