A Larger Class of Cryptographic Boolean Functions via a Study of the Maiorana-McFarland Construction

Thanks to a new upper bound, we study more precisely the nonlinearities of Maiorana-McFarland's resilient functions. We characterize those functions with optimum nonlinearities and we give examples of functions with high nonlinearities. But these functions have a peculiarity which makes them potentially cryptographically weak. We study a natural super-class of Maiorana-McFarland's class whose elements do not have the same drawback and we give examples of such functions achieving high nonlinearities.

[1]  James L. Massey,et al.  A spectral characterization of correlation-immune combining functions , 1988, IEEE Trans. Inf. Theory.

[2]  Sangjin Lee,et al.  On the Correlation Immune Functions and Their Nonlinearity , 1996, ASIACRYPT.

[3]  J. Dillon Elementary Hadamard Difference Sets , 1974 .

[4]  Yuliang Zheng,et al.  Improved Upper Bound on the Nonlinearity of High Order Correlation Immune Functions , 2000, Selected Areas in Cryptography.

[5]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[6]  Claude Carlet On the Coset Weight Divisibility and Nonlinearity of Resilient and Correlation-Immune Functions , 2001, SETA.

[7]  Anne Canteaut,et al.  Degree of Composition of Highly Nonlinear Functions and Applications to Higher Order Differential Cryptanalysis , 2002, EUROCRYPT.

[8]  Yuriy Tarannikov New Constructions of Resilient Boolean Functions with Maximal Nonlinearity , 2001, FSE.

[9]  Claude Carlet,et al.  On Correlation-Immune Functions , 1991, CRYPTO.

[10]  Thomas W. Cusick On Constructing Balanced Correlation Immune Functions , 1998, SETA.

[11]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[12]  Yuriy Tarannikov,et al.  On Resilient Boolean Functions with Maximal Possible Nonlinearity , 2000, INDOCRYPT.

[13]  Anne Canteaut,et al.  Improved Fast Correlation Attacks Using Parity-Check Equations of Weight 4 and 5 , 2000, EUROCRYPT.

[14]  Palash Sarkar,et al.  Results related to the upper bound on nonlinearity for resilient and correlation immune Boolean functions , 2001 .

[15]  Claude Carlet,et al.  More Correlation-Immune and Resilient Functions over Galois Fields and Galois Rings , 1997, EUROCRYPT.

[16]  Palash Sarkar,et al.  New Constructions of Resilient and Correlation Immune Boolean Functions Achieving Upper Bound on Nonlinearity , 2001, Electron. Notes Discret. Math..

[17]  Kwangjo Kim Kim,et al.  Correlation Immune Functions with Controllable Nonlinearity , 1997 .

[18]  Palash Sarkar,et al.  Construction of Nonlinear Boolean Functions with Important Cryptographic Properties , 2000, EUROCRYPT.

[19]  Claude Carlet,et al.  Partially-bent functions , 1992, Des. Codes Cryptogr..

[20]  Thomas Siegenthaler,et al.  Decrypting a Class of Stream Ciphers Using Ciphertext Only , 1985, IEEE Transactions on Computers.

[21]  Thomas Siegenthaler,et al.  Correlation-immunity of nonlinear combining functions for cryptographic applications , 1984, IEEE Trans. Inf. Theory.

[22]  Palash Sarkar,et al.  Modifications of Patterson-Wiedemann functions for cryptographic applications , 2002, IEEE Trans. Inf. Theory.

[23]  Hans Dobbertin,et al.  Construction of Bent Functions and Balanced Boolean Functions with High Nonlinearity , 1994, FSE.

[24]  Anne Canteaut,et al.  On cryptographic properties of the cosets of R(1, m) , 2001, IEEE Trans. Inf. Theory.

[25]  Jennifer Seberry,et al.  On Constructions and Nonlinearity of Correlation Immune Functions (Extended Abstract) , 1994, EUROCRYPT.

[26]  Nicholas J. Patterson,et al.  The covering radius of the (215, 16) Reed-Muller code is at least 16276 , 1983, IEEE Trans. Inf. Theory.

[27]  Willi Meier,et al.  Nonlinearity Criteria for Cryptographic Functions , 1990, EUROCRYPT.

[28]  Palash Sarkar,et al.  Nonlinearity Bounds and Constructions of Resilient Boolean Functions , 2000, CRYPTO.

[29]  Palash Sarkar,et al.  Spectral Domain Analysis of Correlation Immune and Resilient Boolean Functions , 2000, IACR Cryptol. ePrint Arch..

[30]  Jennifer Seberry,et al.  Nonlinearly Balanced Boolean Functions and Their Propagation Characteristics (Extended Abstract) , 1993, CRYPTO.