Linear Transformations Preserving the Strong $q$-log-convexity of Polynomials

In this paper, we give a sufficient condition for the linear transformation preserving the strong $q$-log-convexity. As applications, we get some linear transformations (for instance, Morgan-Voyce transformation, binomial transformation, Narayana transformations of two kinds) preserving the strong $q$-log-convexity. In addition, our results not only extend some known results, but also imply the strong $q$-log-convexities of some sequences of polynomials.

[1]  Bruce E. Sagan,et al.  Inductive proofs of q-log concavity , 1992, Discret. Math..

[2]  Li Liu,et al.  On the log-convexity of combinatorial sequences , 2007, Adv. Appl. Math..

[3]  Pierre Leroux,et al.  Reduced matrices and q-log-concavity properties of q-Stirling numbers , 1990, J. Comb. Theory A.

[4]  George Polya,et al.  On The Product of Two Power Series , 1949, Canadian Journal of Mathematics.

[5]  Arthur L. B. Yang,et al.  Recurrence Relations for Strongly q-Log-Convex Polynomials , 2008, Canadian Mathematical Bulletin.

[6]  K. Driver,et al.  Pólya frequency sequences and real zeros of some 3 F 2 polynomials ✩ , 2007 .

[7]  William Y. C. Chen,et al.  The q-log-convexity of the Narayana polynomials of type B , 2010, Adv. Appl. Math..

[8]  Bao-Xuan Zhu,et al.  Some positivities in certain triangular arrays , 2014 .

[9]  Donna Q.J. Dou,et al.  On the $q$-log-convexity conjecture of Sun , 2013 .

[10]  Petter Brändén,et al.  On linear transformations preserving the Polya frequency property , 2004 .

[11]  Yeong-Nan Yeh,et al.  Log-concavity and LC-positivity , 2007, J. Comb. Theory, Ser. A.

[12]  L. M. Butler,et al.  A Note on Log-Convexity of q-Catalan Numbers , 2007 .

[13]  Bao-Xuan Zhu,et al.  Log-convexity and strong q-log-convexity for some triangular arrays , 2013, Adv. Appl. Math..

[14]  Bruce E. Sagan LOG CONCAVE SEQUENCES OF SYMMETRIC FUNCTIONS AND ANALOGS OF THE JACOBI-TRUDI DETERMINANTS , 1992 .

[15]  Bruce E. Sagan Unimodality and the Reflection Principle , 1998, Ars Comb..

[16]  Rodica Simion,et al.  Some q-analogues of the Schröder numbers arising from combinatorial statistics on lattice paths , 1993 .

[17]  Lynne M. Butler,et al.  The q-log-concavity of q-binomial coefficients , 1990, J. Comb. Theory, Ser. A.

[18]  R. Stanley Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .

[19]  Yi Wang,et al.  q-Eulerian Polynomials and Polynomials with Only Real Zeros , 2006, Electron. J. Comb..

[20]  Arthur L. B. Yang,et al.  Schur positivity and the q-log-convexity of the Narayana polynomials , 2008, 0806.1561.

[21]  Jiang Zeng,et al.  Positivity properties of Jacobi-Stirling numbers and generalized Ramanujan polynomials , 2013, Adv. Appl. Math..

[22]  Yeong-Nan Yeh,et al.  Unimodality Problems of Multinomial Coefficients and Symmetric Functions , 2011, Electron. J. Comb..

[23]  John Riordan,et al.  Inverse Relations and Combinatorial Identities , 1964 .

[24]  Zhi-Wei Sun,et al.  Congruences for Franel numbers , 2011, Adv. Appl. Math..

[25]  Donna Q. J. Dou,et al.  The q-log-convexity of Domb's polynomials , 2013, Ars Comb..