A novel control strategy for the switched reluctance generator

The paper proposes a novel switching strategy that increases the efficiency of the energy conversion and reduces the noise level produced by the generator. The technique redistributes the three switching stages of the converter within one working cycle. Such technique is viable when the generator operates below its base speed. Here, the back electromagnetic force is always lower than the DC-link voltage, hence the phase current is controlled at a desired value. The proposed control method is validated using a commercially available four phase 8/6 switched reluctance generator. Streszczenie. W artykule zaproponowano nową strategie przelączania generator reluktancyjnego. Metoda zwieksza skutecznośc konwersji energii I redukuje szumy. W jednym cyklu realizuje sie trzy etapy przelączen. Metoda jest zalecana gdy generator operuje ponizej bazowej szybkości. (Nowa strategia sterowania generatorem reluktancyjnym)

[1]  C. Mademlis,et al.  Optimizing performance in current-controlled switched reluctance generators , 2005, IEEE Transactions on Energy Conversion.

[2]  J. Clare,et al.  Control of a switched reluctance generator for variable-speed wind energy applications , 2005, IEEE Transactions on Energy Conversion.

[3]  D. Howe,et al.  Iron loss in a modular rotor switched reluctance machine for the "More-Electric" aero-engine , 2005, IEEE transactions on magnetics.

[4]  A. J. Ellison,et al.  Acoustic noise and vibration of rotating electric machines , 1968 .

[5]  Chang-Ming Liaw,et al.  Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor , 2006 .

[6]  David A. Torrey,et al.  Switched reluctance generators and their control , 2002, IEEE Trans. Ind. Electron..

[7]  Iqbal Husain,et al.  Radial force calculation and acoustic noise prediction in switched reluctance machines , 1999, Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370).

[8]  Chang-Ming Liaw,et al.  Establishment of a Switched-Reluctance Generator-Based Common DC Microgrid System , 2011, IEEE Transactions on Power Electronics.

[9]  Rik W. De Doncker,et al.  Calculation of the Acoustic Noise Spectrum of SRM Using Modal Superposition , 2010, IEEE Transactions on Industrial Electronics.

[10]  Damijan Miljavec,et al.  Nonlinear reluctance model of transverse flux motor , 2011 .

[11]  Chi-Yao Wu,et al.  Acoustic noise cancellation techniques for switched reluctance drives , 1995, IAS '95. Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting.

[12]  Nigel Schofield,et al.  Generator Operation of a Switched Reluctance Starter/Generator at Extended Speeds , 2009, IEEE Transactions on Vehicular Technology.

[13]  Chang-Ming Liaw,et al.  On the Design of Power Circuit and Control Scheme for Switched Reluctance Generator , 2008, IEEE Transactions on Power Electronics.

[14]  Mykhaylo Zagirnyak,et al.  Research of energy processes in circuits containing iron in saturation condition , 2011 .

[15]  Chi-Yao Wu,et al.  Analysis and Reduction of Vibration and Acoustic Noise in the Switched Reluctance Drive , 1995, IEEE Transactions on Industry Applications.