GaAs-Based Quantum Dot Lasers

Abstract The unique optical properties of quantum dot semiconductors have brought about significant new capabilities in light-emitting devices fabricated from these materials. In particular, the performance of laser diodes based on epitaxial quantum dots grown on a GaAs substrate has been the focus of intense study for about 20 years. The advances for such lasers emitting at wavelengths longer than 1.2 μm are reviewed here. Four vital aspects are discussed, including the record-low-threshold currents and the impressive temperature stability these lasers have achieved, the extreme range of linewidth enhancement factors possible in these devices, the ultralow linewidth–power product and insensitivity to optical feedback of quantum dot distributed feedback lasers, and, finally, the progress made to date in achieving higher modulation bandwidths in directly modulated and injection-locked quantum dot lasers.

[1]  K. Nakahara,et al.  40-Gb/s Direct Modulation With High Extinction Ratio Operation of 1.3-$\mu$m InGaAlAs Multiquantum Well Ridge Waveguide Distributed Feedback Lasers , 2007, IEEE Photonics Technology Letters.

[2]  A. Stintz,et al.  High-performance InAs quantum-dot lasers near 1.3 μm , 2001 .

[3]  M. Asada,et al.  Gain and the threshold of three-dimensional quantum-box lasers , 1986 .

[4]  M. Okai,et al.  Corrugation-Pitch-Modulated Distributed Feedback Lasers with Ultranarrow Spectral Linewidth , 1994 .

[5]  S. Krishna,et al.  High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  A. Stintz,et al.  Optical characteristics of 1.24-μm InAs quantum-dot laser diodes , 1999, IEEE Photonics Technology Letters.

[7]  C. Boisrobert,et al.  Fiber Optic Communication Systems , 1979 .

[8]  J.M. Liu,et al.  Enhanced modulation bandwidth in injection-locked semiconductor lasers , 1997, IEEE Photonics Technology Letters.

[9]  B. Tromborg,et al.  Linewidth rebroadening in DFB lasers due to weak side modes , 1991, IEEE Photonics Technology Letters.

[10]  Dynamic linewidth of tunnelling injection laser , 1994 .

[11]  Kristian M. Groom,et al.  Improved performance of 1.3μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer , 2004 .

[12]  Influence of refractive index nonlinearities on modulation and noise properties of semiconductor lasers , 1992 .

[13]  Mitsuru Sugawara,et al.  Carrier transport and recombination in p-doped and intrinsic 1.3μm InAs∕GaAs quantum-dot lasers , 2005 .

[14]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[15]  A. L. Gray,et al.  Gain compression coefficient and above-threshold linewidth enhancement factor in InAs/GaAs quantum DFB lasers , 2005, SPIE OPTO.

[16]  M. Osiński,et al.  Linewidth broadening factor in semiconductor lasers--An overview , 1987 .

[17]  Rajaram Bhat,et al.  0.98-/spl mu/m multiple-quantum-well tunneling injection laser with 98-GHz intrinsic modulation bandwidth , 1997 .

[18]  W. J. Devlin,et al.  Packaged frequency-stable tunable 20 kHz linewidth 1.5 μm InGaAsP external cavity laser , 1985 .

[19]  Andrew G. Glen,et al.  APPL , 2001 .

[20]  A. Royset,et al.  Use of dispersive optical fibre for characterisation of chirp in semiconductor lasers , 1994 .

[21]  Y. Arakawa,et al.  Low-driving-current temperature-stable 10 Gbit/s operation of p-doped 1.3 /spl mu/m quantum dot lasers between 20 and 90/spl deg/C , 2007 .

[22]  Peter Michael Smowton,et al.  Filamentation and linewidth enhancement factor In InGaAs quantum dot lasers , 2001, CLEO 2001.

[23]  Govind P. Agrawal,et al.  Effect of gain and index nonlinearities on single-mode dynamics in semiconductor lasers , 1990, Annual Meeting Optical Society of America.

[24]  E. O’Reilly,et al.  Experimental analysis of temperature dependence in 1.3-/spl mu/m AlGaInAs-InP strained MQW lasers , 1999 .

[25]  P. Bhattacharya,et al.  Observation of phonon bottleneck in quantum dot electronic relaxation. , 2001, Physical review letters.

[26]  G. Giuliani,et al.  Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect , 2004, IEEE Photonics Technology Letters.

[27]  R. Olshansky,et al.  Frequency response of 1.3µm InGaAsP high speed semiconductor lasers , 1987 .

[28]  Egorov,et al.  Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth. , 1996, Physical review. B, Condensed matter.

[29]  Govind P. Agrawal,et al.  Nonlinear mechanisms of filamentation in broad-area semiconductor lasers , 1996 .

[30]  Peter Michael Smowton,et al.  Experimental investigation of the effect of wetting-layer states on the gain–current characteristic of quantum-dot lasers , 2002 .

[31]  Johann Peter Reithmaier,et al.  High frequency characteristics of InAs/GaInAs quantum dot distributed feedback lasers emitting at 1.3 /spl mu/m , 2001 .

[32]  M. Wu,et al.  Enhanced Modulation Characteristics of Optical Injection-Locked Lasers: A Tutorial , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[33]  B. Hakki,et al.  Gain spectra in GaAs double−heterostructure injection lasers , 1975 .

[34]  R. Lang,et al.  Injection locking properties of a semiconductor laser , 1982 .

[35]  S. Saito,et al.  Semiconductor laser linewidth in optical feedback configurations , 1983 .

[36]  A. Stintz,et al.  The influence of quantum-well composition on the performance of quantum dot lasers using InAs-InGaAs dots-in-a-well (DWELL) structures , 2000, IEEE Journal of Quantum Electronics.

[37]  C. Caneau,et al.  Cavity length and doping dependence of 1.5- mu m GaInAs/GaInAsP multiple quantum well laser characteristics , 1990, IEEE Photonics Technology Letters.

[38]  Levon V. Asryan,et al.  Characteristic temperature of quantum dot laser , 1997 .

[39]  A. Yariv,et al.  Ultra-high speed semiconductor lasers , 1985 .

[40]  M. Ishida,et al.  Systematic Study of the Effects of Modulation p-Doping on 1.3-$\mu{\hbox {m}}$ Quantum-Dot Lasers , 2007, IEEE Journal of Quantum Electronics.

[41]  Alfred Forchel,et al.  Temperature dependence of the exciton homogeneous linewidth in In 0.60 Ga 0.40 As/GaAs self-assembled quantum dots , 2002 .

[42]  Nikolai N. Ledentsov,et al.  InGaAs-GaAs quantum-dot lasers , 1997 .

[43]  Joo-Heon Ahn,et al.  High temperature performance of self-organised quantum dot laser with stacked p-doped active region , 2002 .

[44]  L. Martiradonna,et al.  Enhanced Performances of Quantum Dot Lasers Operating at 1.3 $\mu$ m , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[45]  H. E. Lassen,et al.  Mode instability and linewidth rebroadening in DFB lasers , 1992 .

[46]  Ikuo Mito,et al.  Sub-MHz spectral linewidth in 1.5 mu m separate-confinement-heterostructure (SCH) quantum-well DFB LDs , 1989 .

[47]  Luke F. Lester,et al.  Variation of the feedback sensitivity in a 1.55 μm InAs/InP quantum-dash Fabry–Perot semiconductor laser , 2008 .

[48]  Dennis G. Deppe,et al.  1.3 μm InAs quantum dot laser with To=161 K from 0 to 80 °C , 2002 .

[49]  Quantum-Dot Phase Modulator Operating at 1300 nm , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[50]  Jasprit Singh,et al.  Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs-GaAs quantum-dot lasers , 2003 .

[51]  Russell D. Dupuis,et al.  Coupled InP quantum-dot InGaP quantum well InP–InGaP–In(AlGa)P–InAlP heterostructure diode laser operation , 2001 .

[52]  Wayne V. Sorin,et al.  Frequency domain analysis of an optical FM discriminator , 1992 .

[53]  K. Kawashima,et al.  Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection , 2003 .

[54]  P. Bhattacharya,et al.  Dynamic characteristics of high-speed In0.4Ga0.6As/GaAs self-organized quantum dot lasers at room temperature , 2002 .

[55]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[56]  David T. D. Childs,et al.  1.3 µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density , 2004 .

[57]  Mode-Resolved Measurements of the Linewidth Enhancement Factor of a Fabry–PÉrot Laser , 2009, IEEE Photonics Technology Letters.

[58]  H.F. Chen,et al.  Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking , 1997, IEEE Photonics Technology Letters.

[59]  New linewidth enhancement determination method in semiconductor lasers based on spectrum analysis above and below threshold , 1992 .

[60]  Guillaume Huyet,et al.  Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states , 2004 .

[61]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[62]  D. Welford,et al.  Magnitude and phase characteristics of frequency modulation in directly modulated GaAlAs semiconductor diode lasers , 1985 .

[63]  F. Devaux,et al.  Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter , 1993 .

[64]  Shun Lien Chuang,et al.  Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers , 2006, IEEE Journal of Quantum Electronics.

[65]  I. Garces,et al.  Measurement of the linewidth enhancement factor in DFB lasers using a high-resolution optical spectrum analyzer , 2005, IEEE Photonics Technology Letters.

[66]  S. Fathpour,et al.  Small-signal modulation characteristics of p-doped 1.1- and 1.3-/spl mu/m quantum-dot lasers , 2005, IEEE Photonics Technology Letters.

[67]  K. Kruger,et al.  Simultaneous measurement of the linewidth, linewidth enhancement factor /spl alpha/, and FM and AM response of a semiconductor laser , 1995 .

[68]  K. Malloy,et al.  High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers , 2003, IEEE Photonics Technology Letters.

[69]  Yasuhiko Arakawa,et al.  Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments , 2004 .

[70]  G. Jacobsen,et al.  Locking conditions and stability properties for a semiconductor laser with external light injection , 1985 .

[71]  Larsson,et al.  Optical absorption by free holes in heavily doped GaAs. , 1991, Physical review. B, Condensed matter.

[72]  P. Gallion,et al.  Analysis of optical-injected distributed feedback lasers using complex optical low-coherence reflectometry , 2003, IEEE Photonics Technology Letters.

[73]  K. Groom,et al.  Recombination and loss mechanisms in low-threshold InAs/GaAs 1.3 /spl mu/m quantum dot lasers , 2004 .

[74]  P. Tasker,et al.  Impedance, modulation response, and equivalent circuit of ultra-high-speed In/sub 0.35/Ga/sub 0.65/As/GaAs MQW lasers with p-doping , 1994, IEEE Photonics Technology Letters.

[75]  Peter Michael Smowton,et al.  Temperature dependence of threshold current in p-doped quantum dot lasers , 2006 .

[76]  Jungho Kim,et al.  Comparison of linewidth enhancement factor between p-doped and undoped quantum-dot lasers , 2006, IEEE Photonics Technology Letters.

[77]  S. Tomić,et al.  The Importance of Recombination via Excited States in InAs/GaAs $\hbox{1.3}\;\mu$m Quantum-Dot Lasers , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[78]  Xiangkun Zhang,et al.  Tunneling injection lasers: a new class of lasers with reduced hot carrier effects , 1996 .

[79]  Andrea Fiore,et al.  Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser , 2005 .

[80]  Y. Wang,et al.  High-frequency modulation characteristics of 1.3-/spl mu/m InGaAs quantum dot lasers , 2004, IEEE Photonics Technology Letters.

[81]  Luke F. Lester,et al.  Bandwidth enhancement of injection-locked 1.3 μm quantum-dot DFB laser , 2008 .

[82]  C. Henry Theory of the linewidth of semiconductor lasers , 1982 .

[83]  Luke F. Lester,et al.  Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp , 2005 .

[84]  M. Sugawara,et al.  Self-Formed In0.5Ga0.5As Quantum Dots on GaAs Substrates Emitting at 1.3 µm , 1994 .

[85]  Measurement of a VPE-transported DFB laser with blue-shifted frequency modulation response from DC to 2 GHz , 1988 .

[86]  Mikhail V. Maximov,et al.  Low threshold, large To injection laser emission from (InGa)As quantum dots , 1994 .

[87]  A. Fiore,et al.  Modeling the temperature characteristics of InAs/GaAs quantum dot lasers , 2009 .

[88]  Haiyu Huang,et al.  Modulation characteristics of quantum-dot lasers: the influence of p-type doping and the electronic density of states on obtaining high speed , 2002 .

[89]  G. Huyet,et al.  The linewidth enhancement factor alpha of quantum dot semiconductor lasers. , 2006, Optics express.

[90]  I. Krestnikov,et al.  Temperature Dependence of Dynamic Properties and Tolerance to Optical Feedback of High-Speed 1.3- $\mu$m DFB Quantum-Dot Lasers , 2011, IEEE Photonics Technology Letters.

[91]  F. Grillot,et al.  2.5-Gb/s transmission characteristics of 1.3-μm DFB lasers with external optical feedback , 2002, IEEE Photonics Technology Letters.

[92]  L. Zhang,et al.  Linewidth study of InAs-InGaAs quantum dot distributed feedback lasers , 2004, IEEE Photonics Technology Letters.

[93]  Antonio Mecozzi,et al.  Novel measurement technique of α factor in DFB semiconductor lasers by injection locking , 1990 .

[94]  H. Shimizu,et al.  InAs Quantum Dot Lasers with Extremely Low Threshold Current Density (7 A/cm2/Layer) , 2005 .

[95]  S. Fathpour,et al.  High-speed 1.3 μm1.3μm tunnel injection quantum-dot lasers , 2005 .

[96]  Dennis G. Deppe,et al.  Quantum dot laser diode with low threshold and low internal loss , 2009 .

[97]  K. Kikuchi,et al.  Novel method for high resolution measurement of laser output spectrum , 1980 .

[98]  R. S. Vodhanel,et al.  12 GHz FM bandwidth for a 1530 nm DFB laser , 1988 .

[99]  Self-assembled In/sub 0.5/Ga/sub 0.5/As quantum-dot lasers with doped active region , 2000 .

[100]  Jesper Mørk,et al.  Quantum dot amplifiers with high output power and low noise , 2003 .

[101]  Shun Lien Chuang,et al.  Bandwidth Enhancement of Fabry-Perot Quantum-well Lasers by Injection-locking , 2006 .

[102]  J. Danckaert,et al.  Round-Robin Measurements of Linewidth Enhancement Factor of Semiconductor Lasers in COST 288 Action , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[103]  Andreas Stintz,et al.  Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes , 2000 .

[104]  R. A. Saunders,et al.  Wideband chirp measurement technique for high bit rate sources , 1994 .

[105]  G. Liu,et al.  Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique , 2001, IEEE Photonics Technology Letters.

[106]  John E. Bowers,et al.  Characterisation of frequency response of 1.5 μm InGaAsP DFB laser diode and InGaAs PIN photodiode by heterodyne measurement technique , 1986 .

[107]  Sasan Fathpour,et al.  High-speed quantum dot lasers , 2005 .

[108]  L. Lester,et al.  Microwave frequency characterization of undoped and p-doped quantum dot lasers emitting at 1.24 μm , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[109]  A. Stintz,et al.  Gain and linewidth enhancement factor in InAs quantum-dot laser diodes , 1999, IEEE Photonics Technology Letters.

[110]  J. Cartledge,et al.  On using fiber transfer functions to characterize laser chirp and fiber dispersion , 1995, IEEE Photonics Technology Letters.

[111]  F. Grillot,et al.  Gain Compression and Above-Threshold Linewidth Enhancement Factor in 1.3-$\mu\hbox{m}$ InAs–GaAs Quantum-Dot Lasers , 2008, IEEE Journal of Quantum Electronics.

[112]  M. Okai Spectral characteristics of distributed feedback semiconductor lasers and their improvements by corrugation‐pitch‐modulated structure , 1994 .

[113]  Sasan Fathpour,et al.  The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 μm quantum dot lasers , 2004 .

[114]  M. Hopkinson,et al.  Origin of Temperature-Dependent Threshold Current in p-Doped and Undoped In(Ga)As Quantum Dot Lasers , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[115]  Andreas Stintz,et al.  Extremely low room-temperature threshold current density diode lasers using InAs dots in In/sub 0.15/Ga/sub 0.85/As quantum well , 1999 .

[116]  K. Vahala,et al.  Measurement of the linewidth enhancement factor α of semiconductor lasers , 1983 .

[117]  C. L. Reynolds,et al.  Role of p-doping profile and regrowth on the static characteristics of 1.3-/spl mu/m MQW InGaAsP-InP lasers: experiment and modeling , 1999 .

[118]  Jasprit Singh,et al.  SMALL-SIGNAL MODULATION AND DIFFERENTIAL GAIN OF SINGLE-MODE SELF-ORGANIZED IN0.4GA0.6AS/GAAS QUANTUM DOT LASERS , 1997 .

[119]  J. Laskar,et al.  Enhanced modulation bandwidth (20 GHz) of In/sub 0.4/Ga/sub 0.6/As-GaAs self-organized quantum-dot lasers at cryogenic temperatures: role of carrier relaxation and differential gain , 1998, IEEE Photonics Technology Letters.

[120]  Serge Luryi,et al.  Tunneling-injection quantum-dot laser: ultrahigh temperature stability , 2001 .

[121]  W. Hofmann,et al.  40 GHz Bandwidth and 64 GHz Resonance Frequency in Injection-Locked 1.55 $\mu$m VCSELs , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[122]  Frederic Grillot,et al.  Measuring the Chirp and the Linewidth Enhancement Factor of Optoelectronic Devices with a Mach–Zehnder Interferometer , 2011, IEEE Photonics Journal.

[123]  Niloy K. Dutta,et al.  Excellent uniformity and very low (<50 A/cm2) threshold current density strained InGaAs quantum well diode lasers on GaAs substrate , 1991 .

[124]  Kerry J. Vahala,et al.  Effect of doping on the optical gain and the spontaneous noise enhancement factor in quantum well amplifiers and lasers studied by simple analytical expressions , 1988 .

[125]  Vadim Tokranov,et al.  Enhanced thermal stability of laser diodes with shape-engineered quantum dot medium , 2003 .

[126]  J. V. Collins,et al.  Measurements of the semiconductor laser linewidth broadening factor , 1983 .

[127]  M. Pochet,et al.  Modeling the Injection-Locked Behavior of a Quantum Dash Semiconductor Laser , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[128]  Tao Zhang,et al.  Measurement of Chirp Parameter and Modulation Index of a Semiconductor Laser Based on Optical Spectrum Analysis , 2007, IEEE Photonics Technology Letters.

[129]  D. Bimberg,et al.  Study of high frequency response of self-organised stacked quantum dot lasers at room temperature , 1997 .

[130]  A. Mooradian,et al.  Spectral characteristics of external-cavity controlled semiconductor lasers , 1980 .