Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper

Nanoscale contact of material surfaces provides an opportunity to explore and better understand the elastic limit and incipient plasticity in crystals. Homogeneous nucleation of a dislocation beneath a nanoindenter is a strain localization event triggered by elastic instability of the perfect crystal at finite strain. The finite element calculation, with a hyperelastic constitutive relation based on an interatomic potential, is employed as an efficient method to characterize such instability. This implementation facilitates the study of dislocation nucleation at length scales that are large compared to atomic dimensions, while remaining faithful to the nonlinear interatomic interactions. An instability criterion based on bifurcation analysis is incorporated into the finite element calculation to predict homogeneous dislocation nucleation. This criterion is superior to that based on the critical resolved shear stress in terms of its accuracy of prediction for both the nucleation site and the slip character of the defect. Finite element calculations of nanoindentation of single crystal copper by a cylindrical indenter and predictions of dislocation nucleation are validated by comparing with direct molecular dynamics simulations governed by the same interatomic potential. Analytic 2D and 3D linear elasticity solutions based on the Stroh formalism are used to benchmark the finite element results. The critical configuration of homogeneous dislocation nucleation under a spherical indenter is quantified with full 3D finite element calculations. The prediction of the nucleation site and slip character is verified by direct molecular dynamics simulations. The critical stress state at the nucleation site obtained from the interatomic potential is in quantitative agreement with ab initio density functional theory calculation.

[1]  James R. Rice,et al.  Dislocation Nucleation from a Crack Tip" an Analysis Based on the Peierls Concept , 1991 .

[2]  Sidney Yip,et al.  Atomic‐level stress in an inhomogeneous system , 1991 .

[3]  Arthur F. Voter,et al.  Structural stability and lattice defects in copper: Ab initio , tight-binding, and embedded-atom calculations , 2001 .

[4]  Huajian Gao,et al.  Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds , 1998 .

[5]  T. C. T. Ting,et al.  Anisotropic Elasticity: Theory and Applications , 1996 .

[6]  Marc Fivel,et al.  Three-dimensional modeling of indent-induced plastic zone at a mesoscale , 1998 .

[7]  J. K. Knowles,et al.  Nonlinear Elasticity: Strain-energy Functions with Multiple Local Minima: Modeling Phase Transformations Using Finite Thermo-elasticity , 2001 .

[8]  J. Houston,et al.  Nanomechanical properties of Au (111), (001), and (110) surfaces , 1998 .

[9]  A. Giannakopoulos,et al.  Discrete and continuous deformation during nanoindentation of thin films , 2000 .

[10]  D. Roundy,et al.  The non-linear elastic behavior and ideal shear strength of Al and Cu , 2001 .

[11]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[12]  J. C. Hamilton,et al.  Surface step effects on nanoindentation. , 2001, Physical review letters.

[13]  Ted Belytschko,et al.  An atomistic-based finite deformation membrane for single layer crystalline films , 2002 .

[14]  J. Ericksen The Cauchy and Born Hypotheses for Crystals. , 1983 .

[15]  T. Page,et al.  The deformation behavior of ceramic crystals subjected to very low load (nano)indentations , 1992 .

[16]  Yibin Fu,et al.  Nonlinear elasticity : theory and applications , 2001 .

[17]  Michael J. Mehl,et al.  Interatomic potentials for monoatomic metals from experimental data and ab initio calculations , 1999 .

[18]  Michael Ortiz,et al.  Nanomechanics of Defects in Solids , 1998 .

[19]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[20]  Michael Ortiz,et al.  Nanoindentation and incipient plasticity , 1999 .

[21]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[22]  Noam Bernstein,et al.  Mixed finite element and atomistic formulation for complex crystals , 1999 .

[23]  H. Baker,et al.  Three-Dimensional Modeling , 2019, IJCAI.

[24]  G. Pharr,et al.  Indentation of elastically anisotropic half-spaces by cones and parabolae of revolution , 2001 .

[25]  Ellad B. Tadmor,et al.  Nucleation of dislocations beneath a plane strain indenter , 2000 .

[26]  Noam Bernstein,et al.  Multiscale simulations of silicon nanoindentation , 2001 .

[27]  J. K. Knowles,et al.  Nonlinear Elasticity: Strain-energy Functions with Multiple Local Minima: Modeling Phase Transformations Using Finite Thermo-elasticity , 2001 .

[28]  M. Baskes,et al.  Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals , 1983 .

[29]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[30]  R. Hill Acceleration waves in solids , 1962 .

[31]  Sidney Yip,et al.  Ideal Pure Shear Strength of Aluminum and Copper , 2002, Science.

[32]  S. Suresh,et al.  Nano-indentation of copper thin films on silicon substrates , 1999 .

[33]  A. Argon,et al.  Energetics of homogeneous nucleation of dislocation loops under a simple shear stress in perfect crystals , 2001 .

[34]  Joost J. Vlassak,et al.  Measuring the elastic properties of anisotropic materials by means of indentation experiments , 1994 .

[35]  Michael Ortiz,et al.  Effect of boundaries and interfaces on shear-band localization , 1991 .

[36]  J. C. Hamilton,et al.  Dislocation nucleation and defect structure during surface indentation , 1998 .

[37]  S. Suresh,et al.  Nanoindentation: Simulation of defect nucleation in a crystal , 2001, Nature.

[38]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[39]  Huajian Gao,et al.  Numerical Simulation of Cohesive Fracture by the Virtual-Internal-Bond Model , 2002 .

[40]  Tod A. Laursen,et al.  A study of the mechanics of microindentation using finite elements , 1992 .

[41]  Peter M. Anderson,et al.  Indentation induced dislocation nucleation: The initial yield point , 1996 .

[42]  C. Hwu,et al.  Punch Problems for an Anisotropic Elastic Half-Plane , 1996 .

[43]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[44]  Huajian Gao,et al.  Crack nucleation and growth as strain localization in a virtual-bond continuum , 1998 .

[45]  J. Barbera,et al.  Contact mechanics , 1999 .

[46]  Ju Li,et al.  AtomEye: an efficient atomistic configuration viewer , 2003 .

[47]  J. Rice Localization of plastic deformation , 1976 .

[48]  Graeme Ackland,et al.  Computer simulation of point defect properties in dilute Fe—Cu alloy using a many-body interatomic potential , 1997 .

[49]  A. Giannakopoulos,et al.  Analysis of Vickers indentation , 1994 .

[50]  Joost J. Vlassak,et al.  Indentation modulus of elastically anisotropic half spaces , 1993 .

[51]  C. Sammis Thermodynamics of crystals by D. C. Wallace , 1973 .

[52]  J. Willis,et al.  Hertzian contact of anisotropic bodies , 1966 .

[53]  Ting Zhu,et al.  Quantifying the early stages of plasticity through nanoscale experiments and simulations , 2003 .

[54]  R. Colton,et al.  Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals , 1997 .

[55]  A. Saada Elasticity : theory and applications , 1993 .

[56]  Herbert Reismann,et al.  Elasticity: Theory and Applications , 1980 .

[57]  R. Hill On the elasticity and stability of perfect crystals at finite strain , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[58]  J. W. Morris,et al.  Connecting atomistic and experimental estimates of ideal strength , 2002 .

[59]  Ting Zhu,et al.  Atomistic mechanisms governing elastic limit and incipient plasticity in crystals , 2002, Nature.

[60]  M. Ortiz,et al.  An analysis of the quasicontinuum method , 2001, cond-mat/0103455.