Projection algorithms for nonconvex minimization with application to sparse principal component analysis
暂无分享,去创建一个
[1] Yurii Nesterov,et al. Generalized Power Method for Sparse Principal Component Analysis , 2008, J. Mach. Learn. Res..
[2] William W. Hager,et al. A New Active Set Algorithm for Box Constrained Optimization , 2006, SIAM J. Optim..
[3] Mark W. Schmidt,et al. Block-Coordinate Frank-Wolfe Optimization for Structural SVMs , 2012, ICML.
[4] Elad Hazan,et al. Projection-free Online Learning , 2012, ICML.
[5] Ash A. Alizadeh,et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.
[6] Jorge Cadima Departamento de Matematica. Loading and correlations in the interpretation of principle compenents , 1995 .
[7] Gert R. G. Lanckriet,et al. A majorization-minimization approach to the sparse generalized eigenvalue problem , 2011, Machine Learning.
[8] Aditya Bhaskara,et al. Detecting high log-densities: an O(n¼) approximation for densest k-subgraph , 2010, STOC '10.
[9] J. N. R. Jeffers,et al. Two Case Studies in the Application of Principal Component Analysis , 1967 .
[10] E.J. Candes,et al. An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.
[11] Alexandre d'Aspremont,et al. Optimal Solutions for Sparse Principal Component Analysis , 2007, J. Mach. Learn. Res..
[12] Sebastiano Vigna,et al. The webgraph framework I: compression techniques , 2004, WWW '04.
[13] J. Borwein,et al. Two-Point Step Size Gradient Methods , 1988 .
[14] Michael P. Friedlander,et al. Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..
[15] Marc Teboulle,et al. Conditional Gradient Algorithmsfor Rank-One Matrix Approximations with a Sparsity Constraint , 2011, SIAM Rev..
[16] Jiawei Zhang,et al. Approximation of Dense-n/2-Subgraph and the Complement of Min-Bisection , 2003, J. Glob. Optim..
[17] D. L. Donoho,et al. Compressed sensing , 2006, IEEE Trans. Inf. Theory.
[18] T. Poggio,et al. Multiclass cancer diagnosis using tumor gene expression signatures , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[19] Francis R. Bach,et al. Structured Sparse Principal Component Analysis , 2009, AISTATS.
[20] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[21] Marc Teboulle,et al. Mirror descent and nonlinear projected subgradient methods for convex optimization , 2003, Oper. Res. Lett..
[22] R. Rockafellar. Convex Analysis: (pms-28) , 1970 .
[23] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[24] Marco Rosa,et al. Layered label propagation: a multiresolution coordinate-free ordering for compressing social networks , 2010, WWW.
[25] Akiko Takeda,et al. Simultaneous pursuit of out-of-sample performance and sparsity in index tracking portfolios , 2012, Comput. Manag. Sci..
[26] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.
[27] R. Tibshirani,et al. Sparse Principal Component Analysis , 2006 .
[28] Kenneth L. Clarkson,et al. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm , 2008, SODA '08.
[29] Philip Wolfe,et al. An algorithm for quadratic programming , 1956 .
[30] Samir Khuller,et al. On Finding Dense Subgraphs , 2009, ICALP.
[31] I. Jolliffe,et al. A Modified Principal Component Technique Based on the LASSO , 2003 .
[32] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[33] Marc Teboulle,et al. Convex approximations to sparse PCA via Lagrangian duality , 2011, Oper. Res. Lett..
[34] Martin Jaggi,et al. Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization , 2013, ICML.
[35] L. Grippo,et al. A nonmonotone line search technique for Newton's method , 1986 .
[36] Xiao-Tong Yuan,et al. Truncated power method for sparse eigenvalue problems , 2011, J. Mach. Learn. Res..
[37] Stephen J. Wright,et al. Sparse reconstruction by separable approximation , 2009, IEEE Trans. Signal Process..
[38] D. Bertsekas. Projected Newton methods for optimization problems with simple constraints , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.