Bioinformatics Tools for the Discovery of New Nonribosomal Peptides.

This chapter helps in the use of bioinformatics tools relevant to the discovery of new nonribosomal peptides (NRPs) produced by microorganisms. The strategy described can be applied to draft or fully assembled genome sequences. It relies on the identification of the synthetase genes and the deciphering of the domain architecture of the nonribosomal peptide synthetases (NRPSs). In the next step, candidate peptides synthesized by these NRPSs are predicted in silico, considering the specificity of incorporated monomers together with their isomery. To assess their novelty, the two-dimensional structure of the peptides can be compared with the structural patterns of all known NRPs. The presented workflow leads to an efficient and rapid screening of genomic data generated by high throughput technologies. The exploration of such sequenced genomes may lead to the discovery of new drugs (i.e., antibiotics against multi-resistant pathogens or anti-tumors).

[1]  Gitanjali Yadav,et al.  NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases , 2004, Nucleic Acids Res..

[2]  Daniel H. Huson,et al.  Dendroscope: An interactive viewer for large phylogenetic trees , 2007, BMC Bioinformatics.

[3]  Christopher N. Boddy,et al.  Bioinformatics tools for genome mining of polyketide and non-ribosomal peptides , 2014, Journal of Industrial Microbiology & Biotechnology.

[4]  P. Brick,et al.  Structural basis for the activation of phenylalanine in the non‐ribosomal biosynthesis of gramicidin S , 1997, The EMBO journal.

[5]  Ammar Abdo,et al.  A new fingerprint to predict nonribosomal peptides activity , 2012, Journal of Computer-Aided Molecular Design.

[6]  María Martín,et al.  Activities at the Universal Protein Resource (UniProt) , 2013, Nucleic Acids Res..

[7]  Gregory Kucherov,et al.  NORINE: a database of nonribosomal peptides , 2007, Nucleic Acids Res..

[8]  Jacques Ravel,et al.  Chapter 8. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. , 2009, Methods in enzymology.

[9]  Jurica Zucko,et al.  Predicting substrate specificity of adenylation domains of nonribosomal peptide synthetases and other protein properties by latent semantic indexing , 2013, Journal of Industrial Microbiology & Biotechnology.

[10]  J. Zucko,et al.  ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures , 2008, Nucleic acids research.

[11]  Peter Man-Un Ung,et al.  Automated genome mining for natural products , 2009, BMC Bioinformatics.

[12]  M. Marahiel,et al.  Learning from Nature's Drug Factories: Nonribosomal Synthesisof MacrocyclicPeptides , 2003, Journal of bacteriology.

[13]  Matthew R. Pocock,et al.  The Bioperl toolkit: Perl modules for the life sciences. , 2002, Genome research.

[14]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[15]  Minoru Kanehisa,et al.  Comprehensive analysis of distinctive polyketide and nonribosomal peptide structural motifs encoded in microbial genomes. , 2007, Journal of molecular biology.

[16]  Tatiana A. Tatusova,et al.  NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy , 2011, Nucleic Acids Res..

[17]  Kai Blin,et al.  antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences , 2011, Nucleic Acids Res..

[18]  Tilmann Weber,et al.  Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution , 2007, BMC Evolutionary Biology.

[19]  Tilmann Weber,et al.  In silico tools for the analysis of antibiotic biosynthetic pathways. , 2014, International journal of medical microbiology : IJMM.

[20]  Kai Blin,et al.  antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers , 2013, Nucleic Acids Res..

[21]  S. Salzberg,et al.  Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.

[22]  G. Challis,et al.  Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. , 2000, Chemistry & biology.

[23]  Gitanjali Yadav,et al.  SBSPKS: structure based sequence analysis of polyketide synthases , 2010, Nucleic Acids Res..

[24]  T. Stachelhaus,et al.  The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. , 1999, Chemistry & biology.

[25]  Gregory Kucherov,et al.  Diversity of Monomers in Nonribosomal Peptides: towards the Prediction of Origin and Biological Activity , 2010, Journal of bacteriology.

[26]  Jeff H. Chang,et al.  A draft genome sequence and functional screen reveals the repertoire of type III secreted proteins of Pseudomonas syringae pathovar tabaci 11528 , 2009, BMC Genomics.

[27]  Carlos Prieto,et al.  NRPSsp: non-ribosomal peptide synthase substrate predictor , 2012, Bioinform..

[28]  M. Devignes,et al.  Prediction of Monomer Isomery in Florine: A Workflow Dedicated to Nonribosomal Peptide Discovery , 2014, PloS one.

[29]  Kim Rutherford,et al.  Artemis: sequence visualization and annotation , 2000, Bioinform..

[30]  A. Berti,et al.  Identification of a Biosynthetic Gene Cluster and the Six Associated Lipopeptides Involved in Swarming Motility of Pseudomonas syringae pv. tomato DC3000 , 2007, Journal of bacteriology.

[31]  Bartek Wilczynski,et al.  Biopython: freely available Python tools for computational molecular biology and bioinformatics , 2009, Bioinform..

[32]  Yanli Wang,et al.  PubChem: Integrated Platform of Small Molecules and Biological Activities , 2008 .

[33]  R. Breitling,et al.  Detecting Sequence Homology at the Gene Cluster Level with MultiGeneBlast , 2013, Molecular biology and evolution.

[34]  Kai Blin,et al.  antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters , 2015, Nucleic Acids Res..

[35]  J. Badger,et al.  The Natural Product Domain Seeker NaPDoS: A Phylogeny Based Bioinformatic Tool to Classify Secondary Metabolite Gene Diversity , 2012, PloS one.

[36]  Valérie Leclère,et al.  Norine, the knowledgebase dedicated to non-ribosomal peptides, is now open to crowdsourcing , 2015, Nucleic Acids Res..

[37]  H. Berman,et al.  The future of the Protein Data Bank. , 2013, Biopolymers.

[38]  M. Schäfer,et al.  New linear lipopeptides produced by Pseudomonas cichorii SF1-54 are involved in virulence, swarming motility, and biofilm formation. , 2013, Molecular plant-microbe interactions : MPMI.

[39]  Tilmann Weber,et al.  Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs) , 2005, Nucleic acids research.

[40]  Steven Salzberg,et al.  TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders , 2004, Bioinform..

[41]  Kai Blin,et al.  NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity , 2011, Nucleic Acids Res..

[42]  Marnix H Medema,et al.  Bioinformatics approaches and software for detection of secondary metabolic gene clusters. , 2012, Methods in molecular biology.

[43]  Gregory Kucherov,et al.  Structural pattern matching of nonribosomal peptides , 2009, BMC Structural Biology.

[44]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..