Spin Crossover at the Nanometre Scale

From the development of new methods for the synthesis and patterning of nanometre‐scale thin films and particles, to the first investigations of charge transport and photonic properties, there has been a proliferation of research concerning spin crossover nanomaterials in recent years. Studies have aimed at addressing fundamental questions concerning size‐reduction effects, as well as striving towards practical applications in this important class of bistable molecular materials. This microreview describes the most recent achievements and highlights possible future directions in this field.

[1]  Azzedine Bousseksou,et al.  Molecular spin crossover phenomenon: recent achievements and prospects. , 2011, Chemical Society reviews.

[2]  S. Sanvito,et al.  Giant resistance change across the phase transition in spin-crossover molecules. , 2012, Physical review letters.

[3]  A. Stancu,et al.  Size effect in spin-crossover systems investigated by FORC measurements, for surfacted [Fe(NH2-trz)3](Br)2·3H2O nanoparticles: reversible contributions and critical size , 2011 .

[4]  Aurelian Rotaru,et al.  Spin state dependence of electrical conductivity of spin crossover materials. , 2012, Chemical communications.

[5]  Azzedine Bousseksou,et al.  Guest effect on nanopatterned spin-crossover thin films. , 2011, Small.

[6]  Christophe Vieu,et al.  Electrical properties and non-volatile memory effect of the [Fe(HB(pz)3)2] spin crossover complex integrated in a microelectrode device , 2011 .

[7]  Jean-François Létard,et al.  Spin crossover materials evaporated under clean high vacuum and ultra-high vacuum conditions: from thin films to single molecules , 2012 .

[8]  J. McGarvey,et al.  The Raman effect and its application to electronic spectroscopies in metal-centered species: Techniques and investigations in ground and excited states , 2007 .

[9]  G. Molnár,et al.  Synthesis of spin crossover nano-objects with different morphologies and properties , 2011 .

[10]  Azzedine Bousseksou,et al.  Soft lithographic patterning of spin crossover complexes. Part 1: fluorescent detection of the spin transition in single nano-objects , 2012 .

[11]  Juan José Delgado,et al.  Bifunctional hybrid SiO2 nanoparticles showing synergy between core spin crossover and shell luminescence properties. , 2011, Angewandte Chemie.

[12]  Francesca Matino,et al.  Electron-induced spin crossover of single molecules in a bilayer on gold. , 2012, Angewandte Chemie.

[13]  A. Stancu,et al.  Thermal hysteresis in spin-crossover compounds studied within the mechanoelastic model and its potential application to nanoparticles , 2011 .

[14]  A. Hauser Intersystem crossing in the [Fe(ptz)6](BF4)2 spin crossover system (ptz=1‐propyltetrazole) , 1991 .

[15]  F. Evers,et al.  Electrical control over the Fe(II) spin crossover in a single molecule: Theory and experiment , 2011 .

[16]  G. Molnár,et al.  High quality nano-patterned thin films of the coordination compound {Fe(pyrazine)[Pt(CN)4]} deposited layer-by-layer , 2011 .

[17]  Eugenio Coronado,et al.  Room‐Temperature Electrical Addressing of a Bistable Spin‐Crossover Molecular System , 2011, Advanced materials.

[18]  M. Stébé,et al.  Confined Growth of Spin Crossover Nanoparticles in Surfactant-Based Matrices: Enhancing Shape Anisotropy , 2011 .

[19]  C. Rovira,et al.  Charge transport through unpaired spin-containing molecules on surfaces , 2012 .

[20]  A. Kaiba,et al.  The 1-D polymeric structure of the [Fe(NH2trz)3](NO3)2·nH2O (with n = 2) spin crossover compound proven by single crystal investigations. , 2011, Chemical communications.

[21]  Yann Garcia,et al.  A biomembrane stencil for crystal growth and soft lithography of a thermochromic molecular sensor. , 2010, Small.

[22]  Manuel Gruber,et al.  Robust spin crossover and memristance across a single molecule , 2012, Nature Communications.

[23]  G. Molnár,et al.  Detection of molecular spin-state changes in ultrathin films by photonic methods , 2012 .

[24]  Massimiliano Cavallini,et al.  Status and perspectives in thin films and patterning of spin crossover compounds. , 2012, Physical chemistry chemical physics : PCCP.

[25]  R. Schmid,et al.  Surface chemistry of metal-organic frameworks at the liquid-solid interface. , 2011, Angewandte Chemie.

[26]  J. Dayen,et al.  Photoconduction in [Fe(Htrz)2(trz)](BF4)·H2O nanocrystals. , 2011, Chemical communications.

[27]  Karsten Flensberg,et al.  Electrical manipulation of spin states in a single electrostatically gated transition-metal complex. , 2009, Nano letters.

[28]  E. Quandt,et al.  First observation of light-induced spin change in vacuum deposited thin films of iron spin crossover complexes. , 2011, Dalton transactions.

[29]  G. Molnár,et al.  Synthesis of [Fe(hptrz)3](OTs)2 spin crossover nanoparticles in microemulsion , 2012 .

[30]  G. Molnár,et al.  Synthesis of spin-crossover nano- and micro-objects in homogeneous media. , 2012, Chemistry.

[31]  G. Molnár,et al.  Luminescent Spin‐Crossover Materials , 2013 .

[32]  Yann Garcia,et al.  Effect of texture alteration by thin film fabrication on the spin crossover of [Fe(3-Br-phen)2(NCS)2].0.5CH3OH (poster) , 2010 .

[33]  C. Enachescu,et al.  Size dependent thermal hysteresis in spin crossover nanoparticles reflected within a Monte Carlo based Ising-like model , 2012 .

[34]  A. Bousseksou,et al.  Micro- and nanocrystals of the iron(III) spin-transition material [FeIII(3-MeO-SalEen)2]PF6 , 2012 .

[35]  Giampiero Ruani,et al.  Thin deposits and patterning of room-temperature-switchable one-dimensional spin-crossover compounds. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[36]  Eliseo Ruiz,et al.  Coherent transport through spin-crossover single molecules. , 2012, Journal of the American Chemical Society.

[37]  Azzedine Bousseksou,et al.  Surface plasmons reveal spin crossover in nanometric layers. , 2011, Journal of the American Chemical Society.

[38]  D. Reger,et al.  Spin Crossover in Pyrazolylborate and Pyrazolylmethane Complexes , 2005 .

[39]  A. Bousseksou,et al.  Matrix-dependent cooperativity in spin crossover Fe(pyrazine)Pt(CN)4 nanoparticles. , 2011, Chemical communications.

[40]  E. Collet,et al.  Femtosecond spin-state photoswitching of molecular nanocrystals evidenced by optical spectroscopy. , 2012, Angewandte Chemie.

[41]  Yann Garcia,et al.  Spin transition charted in a fluorophore-tagged thermochromic dinuclear iron(II) complex. , 2011, Journal of the American Chemical Society.

[42]  Christophe Vieu,et al.  Soft lithographic patterning of spin crossover complexes. Part 2: stimuli-responsive diffraction grating properties , 2012 .

[43]  C. Enachescu,et al.  Control of the thermal hysteresis of the prototypal spin-transition FeII(phen)2(NCS)2 compound via the microcrystallites environment: experiments and mechanoelastic model , 2012 .

[44]  A. Fujiwara,et al.  Step-by-step fabrication of a highly oriented crystalline three-dimensional pillared-layer-type metal-organic framework thin film confirmed by synchrotron X-ray diffraction. , 2012, Journal of the American Chemical Society.

[45]  Kamel Boukheddaden,et al.  Two-dimensional Ising-like model with specific edge effects for spin-crossover nanoparticles: A Monte Carlo study , 2011 .