CLUSTER spacecraft observation of a thin current sheet at the Earth’s magnetopause

Abstract On March 30, 2002 within 17 min the four CLUSTER spacecraft crossed the Earth’s high-latitude magnetopause three times. We found that all three magnetopause current sheets are nearly co-planar on the scales of the CLUSTER spacecraft separation. The thickness of the current sheets changes from 1 to 40 magnetosheath-proton thermal gyro-radii. The thinnest (first crossed) magnetopause current sheet is locally open and might be electron driven. The frozen-in condition of the thermal ions is violated, the Hall term (Lorentz force term) is comparable to the electric field. Substantial electrostatic wave intensities are observed at lower-hybrid frequencies on the magnetospheric side of the thinnest magnetopause current sheet. We obtained that the quasi-linear diffusion rate due to lower-hybrid drift waves would not explain the formation of the adjacent boundary layer and a fast magnetopause thickening. Instead, the diffusion is enhanced due to strong, non-linear wave-particle interactions. We estimate the anomalous collision- and diffusion rates by calculating the correlation between the fluctuations of current density and magnetic field. The resulting strong anomalous diffusion can account for the formation of the adjacent magnetopause boundary layers and eventually the fast magnetopause thickening.

[1]  F. Coroniti Space plasma turbulent dissipation: Reality or myth? , 1985 .

[2]  A. Vaivads,et al.  Anomalous resistivity due to nonlinear lower-hybrid drift waves , 2005 .

[3]  C. Russell,et al.  Plasma flow reversals at the dayside magnetopause and the origin of asymmetric polar cap convection , 1990 .

[4]  G. M. Keating,et al.  Nonmigrating tides in the thermosphere of Mars , 2002 .

[5]  A. Vaivads,et al.  Structure of the magnetic reconnection diffusion region from four-spacecraft observations. , 2004, Physical review letters.

[6]  C. Russell,et al.  The thickness and structure of high beta magnetopause current layer , 1994 .

[7]  Rudolf A. Treumann,et al.  Advanced space plasma physics , 1997 .

[8]  T. Carozzi,et al.  Multi-spacecraft observations of broadband waves near the lower hybrid frequency at the Earthward edge of the magnetopause , 2001 .

[9]  I. Papamastorakis,et al.  First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster ion spectrometry (CIS) experiment , 2001 .

[10]  F. Mozer,et al.  Evidence of diffusion regions at a subsolar magnetopause crossing. , 2002, Physical review letters.

[11]  N. T. Gladd,et al.  The lower-hybrid-drift instability as a source of anomalous resistivity for magnetic field line reconnection , 1977 .

[12]  Per-Arne Lindqvist,et al.  THE ELECTRIC FIELD AND WAVE EXPERIMENT FOR THE CLUSTER MISSION , 1997 .

[13]  C. Russell,et al.  The thickness of the magnetopause current layer: ISEE 1 and 2 observations , 1982 .

[14]  C. Russell,et al.  ISEE-1 and 2 magnetometer observations of the magnetopause , 1979 .

[15]  A. Vaivads,et al.  Thin electron‐scale layers at the magnetopause , 2004 .

[16]  S. Wofsy,et al.  An empirical analysis of the spatial variability of atmospheric CO2: Implications for inverse analyses and space‐borne sensors , 2004 .

[17]  K. Stasiewicz New Methods and Techniques in Visualization and Mapping of Magnetospheric Boundaries , 1994 .

[18]  T. Aushev,et al.  Radiative B meson decays into Kπγ and Kππγ final states , 2002 .

[19]  A. Balogh,et al.  Magnetopause current as seen by Cluster , 2005 .

[20]  C Bozzi,et al.  Measurements of CP-violating asymmetries in B0-->K(0)(s)pi(0) decays. , 2004, Physical review letters.

[21]  M. Dunlop,et al.  The Cluster magnetic field investigation: Scientific objectives and instrumentation , 1993 .

[22]  J. De Keyser,et al.  Magnetopause and Boundary Layer , 1976 .

[23]  David P. Stern,et al.  Modeling the global magnetic field of the large‐scale Birkeland current systems , 1996 .

[24]  S. Bale,et al.  Observation of lower hybrid drift instability in the diffusion region at a reconnecting magnetopause , 2002 .

[25]  M. Dunlop,et al.  CLUSTER encounters with the high altitude cusp: boundary structure and magnetic field depletions , 2004 .

[26]  Motohiko Tanaka,et al.  Simulations on lower hybrid drift instability and anomalous resistivity in the magnetic neutral sheet , 1981 .

[27]  K. Glassmeier,et al.  Four‐point Cluster application of magnetic field analysis tools: The discontinuity analyzer , 2002 .

[28]  A. Vaivads,et al.  Cluster observations of lower hybrid turbulence within thin layers at the magnetopause , 2004 .

[29]  C. Russell,et al.  Magnetic field rotation through the magnetopause: ISEE 1 and 2 observations , 1982 .

[30]  J. Sauvaud,et al.  The exterior cusp and its boundary with the magnetosheath: Cluster multi-event analysis , 2004 .

[31]  M. W. Dunlop,et al.  Four‐point Cluster application of magnetic field analysis tools: The Curlometer , 2002 .

[32]  C. Russell,et al.  Observations of reconnection of interplanetary and lobe magnetic field lines at the high‐latitude magnetopause , 1991 .

[33]  H. Banks,et al.  Characteristics of interleaving in the western equatorial Pacific , 2002 .