Oblivious Evaluation of Non-deterministic Finite Automata with Application to Privacy-Preserving Virus Genome Detection

Various string matching problems can be solved by means of a deterministic finite automaton (DFA) or a non-deterministic finite automaton (NFA). In non-oblivious cases, DFAs are often preferred for their run-time efficiency despite larger sizes. In oblivious cases, however, the inevitable computation and communication costs associated with the automaton size are more favorable to NFAs. We propose oblivious protocols for NFA evaluation based on homomorphic encryption and demonstrate that our method can be orders of magnitude faster than DFA-based methods, making it applicable to real-life scenarios, such as privacy-preserving detection of viral infection using genomic data.

[1]  Marina Blanton,et al.  Secure Outsourcing of DNA Searching via Finite Automata , 2010, DBSec.

[2]  Gonzalo Navarro,et al.  Flexible Pattern Matching in Strings: Practical On-Line Search Algorithms for Texts and Biological Sequences , 2002 .

[3]  Michael K. Reiter,et al.  Third-Party Private DFA Evaluation on Encrypted Files in the Cloud , 2012, ESORICS.

[4]  Patrick Crowley,et al.  Algorithms to accelerate multiple regular expressions matching for deep packet inspection , 2006, SIGCOMM.

[5]  Keith B. Frikken Practical Private DNA String Searching and Matching through Efficient Oblivious Automata Evaluation , 2009, DBSec.

[6]  Stefan Katzenbeisser,et al.  Privacy preserving error resilient dna searching through oblivious automata , 2007, CCS '07.

[7]  Craig Gentry,et al.  Private Database Queries Using Somewhat Homomorphic Encryption , 2013, ACNS.

[8]  Eugene W. Myers,et al.  A Four Russians algorithm for regular expression pattern matching , 1992, JACM.

[9]  Craig Gentry,et al.  Fully homomorphic encryption using ideal lattices , 2009, STOC '09.

[10]  Vitaly Shmatikov,et al.  Towards Practical Privacy for Genomic Computation , 2008, 2008 IEEE Symposium on Security and Privacy (sp 2008).

[11]  Ken Thompson,et al.  Programming Techniques: Regular expression search algorithm , 1968, Commun. ACM.

[12]  Gonzalo Navarro,et al.  Fast and Simple Character Classes and Bounded Gaps Pattern Matching, with Applications to Protein Searching , 2003, J. Comput. Biol..

[13]  Jan Willemson,et al.  Universally composable privacy preserving finite automata execution with low online and offline complexity , 2013, IACR Cryptol. ePrint Arch..

[14]  Jonathan Katz,et al.  Secure text processing with applications to private DNA matching , 2010, CCS '10.

[15]  Enav Weinreb,et al.  Communication Efficient Secure Linear Algebra , 2006, TCC.

[16]  Cong Wang,et al.  Efficient verifiable fuzzy keyword search over encrypted data in cloud computing , 2013, Comput. Sci. Inf. Syst..

[17]  Payman Mohassel,et al.  Longest common subsequence as private search , 2009, WPES '09.

[18]  Benny Pinkas,et al.  Secure Hamming Distance Based Computation and Its Applications , 2009, ACNS.

[19]  Vinod Vaikuntanathan,et al.  Can homomorphic encryption be practical? , 2011, CCSW '11.

[20]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[21]  Udi Manber,et al.  Fast text searching: allowing errors , 1992, CACM.

[22]  Pascal Paillier,et al.  Public-Key Cryptosystems Based on Composite Degree Residuosity Classes , 1999, EUROCRYPT.

[23]  Babak Sadeghiyan,et al.  An Efficient Protocol for Oblivious DFA Evaluation and Applications , 2012, CT-RSA.

[24]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[25]  Carmit Hazay,et al.  Computationally Secure Pattern Matching in the Presence of Malicious Adversaries , 2010, Journal of Cryptology.

[26]  Esko Ukkonen,et al.  Finding Approximate Patterns in Strings , 1985, J. Algorithms.

[27]  Craig Gentry,et al.  A fully homomorphic encryption scheme , 2009 .

[28]  Andrew Chi-Chih Yao,et al.  Protocols for secure computations , 1982, FOCS 1982.

[29]  Daniel J. Wilson,et al.  A Modified RNA-Seq Approach for Whole Genome Sequencing of RNA Viruses from Faecal and Blood Samples , 2013, PLoS ONE.