Comparing two types of engineering visualizations: task-related manipulations matter.

This study focuses on the comparison of traditional engineering drawings with a CAD (computer aided design) visualization in terms of user performance and eye movements in an applied context. Twenty-five students of mechanical engineering completed search tasks for measures in two distinct depictions of a car engine component (engineering drawing vs. CAD model). Besides spatial dimensionality, the display types most notably differed in terms of information layout, access and interaction options. The CAD visualization yielded better performance, if users directly manipulated the object, but was inferior, if employed in a conventional static manner, i.e. inspecting only predefined views. An additional eye movement analysis revealed longer fixation durations and a stronger increase of task-relevant fixations over time when interacting with the CAD visualization. This suggests a more focused extraction and filtering of information. We conclude that the three-dimensional CAD visualization can be advantageous if its ability to manipulate is used.

[1]  Mateu Sbert,et al.  A unified information-theoretic framework for viewpoint selection and mesh saliency , 2009, TAP.

[2]  M. Land,et al.  The Roles of Vision and Eye Movements in the Control of Activities of Daily Living , 1998, Perception.

[3]  Rajesh P. N. Rao,et al.  Embodiment is the foundation, not a level , 1996, Behavioral and Brain Sciences.

[4]  Monica Tavanti,et al.  On the Relative Utility of 3D Interfaces , 2004 .

[5]  Sebastian Pannasch,et al.  PII: S0042-6989(01)00207-3 , 2001 .

[6]  J. Spencer,et al.  Dimensional Information on Engineering Drawings , 1974 .

[7]  Nelson L. Max,et al.  A characterization of the scientific data analysis process , 1992, Proceedings Visualization '92.

[8]  Dave M. Stampe,et al.  Heuristic filtering and reliable calibration methods for video-based pupil-tracking systems , 1993 .

[9]  Christopher D. Wickens,et al.  The Proximity Compatibility Principle: Its Psychological Foundation and Relevance to Display Design , 1995, Hum. Factors.

[10]  R. Johansson,et al.  Eye–Hand Coordination in Object Manipulation , 2001, The Journal of Neuroscience.

[11]  C. Erkelens,et al.  Coarse-to-fine eye movement strategy in visual search , 2007, Vision Research.

[12]  C. C. Wood,et al.  The ɛ-Adjustment Procedure for Repeated-Measures Analyses of Variance , 1976 .

[13]  Peter J. Passmore,et al.  Effects of viewing and orientation on path following in a medical teleoperation environment , 2001, Proceedings IEEE Virtual Reality 2001.

[14]  J. Helmert,et al.  Visual Fixation Durations and Saccade Amplitudes: Shifting Relationship in a Variety of Conditions , 2008 .

[15]  B. Velichkovsky,et al.  Time course of information processing during scene perception: The relationship between saccade amplitude and fixation duration , 2005 .

[16]  D. Coppola,et al.  Idiosyncratic characteristics of saccadic eye movements when viewing different visual environments , 1999, Vision Research.

[17]  M. Goodale,et al.  The visual brain in action , 1995 .

[18]  Helge J. Ritter,et al.  Comparative visual search: a difference that makes a difference , 2001, Cogn. Sci..

[19]  Roxanne L. Canosa,et al.  Real-world vision: Selective perception and task , 2009, TAP.

[20]  Miles C. Bowman,et al.  Control strategies in object manipulation tasks , 2006, Current Opinion in Neurobiology.

[21]  Harvey S. Smallman,et al.  The Use of 2D and 3D Displays for Shape-Understanding versus Relative-Position Tasks , 2001, Hum. Factors.

[22]  J. Antes The time course of picture viewing. , 1974, Journal of experimental psychology.

[23]  Melanie Tory,et al.  Combining 2D and 3D views for orientation and relative position tasks , 2004, CHI.

[24]  Christopher D. Wickens,et al.  Display Dimensionality and Conflict Geometry Effects on Maneuver Preferences for Resolving in-Flight Conflicts , 2005 .

[25]  K. Rayner Eye movements in reading and information processing: 20 years of research. , 1998, Psychological bulletin.

[26]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[27]  Heidrun Schumann,et al.  Visualisierung - Grundlagen und allgemeine Methoden , 2000 .

[28]  M. Goodale,et al.  Manipulating and recognizing virtual objects: where the action is. , 2001, Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale.

[29]  Geoffrey S. Hubona,et al.  Spatial Cues in 3D Visualization , 2004, Ambient Intelligence for Scientific Discovery.

[30]  Mary M Hayhoe,et al.  Task and context determine where you look. , 2016, Journal of vision.

[31]  M. Goodale,et al.  Active manual control of object views facilitates visual recognition , 1999, Current Biology.

[32]  D. Ballard,et al.  Eye movements in natural behavior , 2005, Trends in Cognitive Sciences.

[33]  R. Karsh,et al.  Cognitive strategies for visual search. , 1986, Acta psychologica.

[34]  Barbara Gillam,et al.  The Perception of Spatial Layout from Static Optical Information , 1995 .

[35]  A. Aron,et al.  Statistics for Psychology , 1994 .

[36]  S. Ellis Pictorial communication in virtual and real environments , 1991 .

[37]  Jarek Rossignac The 3D revolution: CAD access for all! , 1997, Proceedings of 1997 International Conference on Shape Modeling and Applications.

[38]  Mark Wexler,et al.  Depth perception by the active observer , 2005, Trends in Cognitive Sciences.

[39]  John A. Perrone,et al.  Visual slant underestimation , 1991 .

[40]  T Vilis,et al.  “Active” and “passive” learning of three-dimensional object structure within an immersive virtual reality environment , 2002, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[41]  M A Just,et al.  A theory of reading: from eye fixations to comprehension. , 1980, Psychological review.

[42]  Shumin Zhai,et al.  Representation Matters: The Effect of 3D Objects and a Spatial Metaphor in a Graphical User Interface , 1998, BCS HCI.

[43]  Christopher D. Wickens,et al.  Frames of Reference for the Display of Battlefield Information: Judgment-Display Dependencies , 2000, Hum. Factors.

[44]  Eyal M. Reingold,et al.  Chapter 4 – Saccadic Selectivity During Visual Search: The Influence of Central Processing Difficulty , 2003 .

[45]  Colin Ware,et al.  Exploration and virtual camera control in virtual three dimensional environments , 1990, I3D '90.

[46]  Boris M. Velichkovsky,et al.  Towards an express-diagnostics for level of processing and hazard perception , 2002 .

[47]  Jeff B. Pelz,et al.  Extended tasks elicit complex eye movement patterns , 2000, ETRA.

[48]  Harvey S. Smallman,et al.  Information Availability in 2D and 3D Displays , 2001, IEEE Computer Graphics and Applications.

[49]  Rajesh P. N. Rao,et al.  PSYCHOLOGICAL SCIENCE Research Article EYE MOVEMENTS REVEAL THE SPATIOTEMPORAL DYNAMICS OE VISUAL SEARCH , 2022 .

[50]  Aleksandr R. Luria,et al.  Disturbances of the structure of active perception in lesions of the posterior and anterior regions of the brain , 1968 .

[51]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[52]  J. Pelz,et al.  Oculomotor behavior and perceptual strategies in complex tasks , 2001, Vision Research.

[53]  A. Li,et al.  Comparison of two-dimensional vs three-dimensional camera systems in laparoscopic surgery , 1997, Surgical Endoscopy.

[54]  Christopher D. Wickens,et al.  The Cambridge Handbook of Visuospatial Thinking: Design Applications of Visual Spatial Thinking: The Importance of Frame of Reference , 2005 .

[55]  J. Todd,et al.  The effects of viewing angle, camera angle, and sign of surface curvature on the perception of three-dimensional shape from texture. , 2007, Journal of vision.