Parameters estimation of an aquatic biological system by the adjoint method

Simulation models are currently used to predict environmental impacts. However, models must be adapted to the peculiarities of the given situation and one of these adaptations consists in the calibration of certain model parameters. The calibration is made by an optimization technique in which parameters must be adjusted to fit to the data coming from one sampling station.

[1]  Validation of numerical models of the unsteady flow in lakes , 1979 .

[2]  O. Loucks,et al.  Ecosystem model for the pelagic zone of Lake Wingra , 1974 .

[3]  H. Bremermann A method of unconstrained global optimization , 1970 .

[4]  Lorenz T. Biegler,et al.  Nonlinear parameter estimation: A case study comparison , 1986 .

[5]  Y. Jarny Identification of spatially varying parameters for a distributed system — Application to a thermal process , 1981 .

[6]  H. Bremermann,et al.  Parameter identification of the calvin photosynthesis cycle , 1979 .

[7]  J. Ottaway,et al.  Application of optimization procedures to Tracer kinetic data , 1972 .

[8]  A simple integral method for system identification , 1971 .

[9]  Jukka Ranta,et al.  Procedures for parameter and state estimation of microbial growth process models , 1982, Autom..

[10]  M. Nihtilä,et al.  Practical identifiability of growth and substrate consumption models , 1977, Biotechnology and bioengineering.

[11]  Rein Luus,et al.  Increasing the size of region of convergence for parameter estimation through the use of shorter data-length , 1980 .

[12]  Robert E. Kalaba,et al.  Quasilinearization and the estimation of chemical rate constants from raw kinetic data [by] R. Bellman [and others] , 1967 .

[13]  J. Steele The Structure of Marine Ecosystems , 1974 .

[14]  R. Roth Techniques in the identification of deterministic systems , 1981 .

[15]  Robert D. Tanner Estimating Kinetic Rate Constants Using Orthogonal Polynomials and Picard's Iteration Method , 1972 .