High-quality construction of analysis-suitable trivariate NURBS solids by reparameterization methods

High-quality volumetric parameterization of computational domain plays an important role in three-dimensional isogeometric analysis. Reparameterization technique can improve the distribution of isoparametric curves/surfaces without changing the geometry. In this paper, using the reparameterization method, we investigate the high-quality construction of analysis-suitable NURBS volumetric parameterization. Firstly, we introduce the concept of volumetric reparameterization, and propose an optimal Möbius transformation to improve the quality of the isoparametric structure based on a new uniformity metric. Secondly, from given boundary NURBS surfaces, we present a two-stage scheme to construct the analysis-suitable volumetric parameterization: in the first step, uniformity-improved reparameterization is performed on the boundary surfaces to achieve high-quality isoparametric structure without changing the shape; in the second step, from a new variational harmonic metric and the reparameterized boundary surfaces, we construct the optimal inner control points and weights to achieve an analysis-suitable NURBS solid. Several examples with complicated geometry are presented to illustrate the effectiveness of proposed methods.

[1]  Timon Rabczuk,et al.  Reproducing Kernel Triangular B-spline-based FEM for Solving PDEs , 2013 .

[2]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[3]  Régis Duvigneau,et al.  Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications , 2013, Comput. Aided Des..

[4]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[5]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[6]  Dongming Wang,et al.  Improving Angular Speed Uniformity by C 1 Piecewise Reparameterization , 2012, Automated Deduction in Geometry.

[7]  Vinh Phu Nguyen,et al.  Isogeometric analysis suitable trivariate NURBS representation of composite panels with a new offset algorithm , 2014, Comput. Aided Des..

[8]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[9]  Bernd Hamann,et al.  Iso‐geometric Finite Element Analysis Based on Catmull‐Clark : ubdivision Solids , 2010, Comput. Graph. Forum.

[10]  Xilu Wang,et al.  An optimization approach for constructing trivariate B-spline solids , 2014, Comput. Aided Des..

[11]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[12]  Gershon Elber,et al.  Volumetric Boolean sum , 2012, Comput. Aided Geom. Des..

[13]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[14]  Yuri Bazilevs,et al.  Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .

[15]  Régis Duvigneau,et al.  Constructing analysis-suitable parameterization of computational domain from CAD boundary by variational harmonic method , 2013, J. Comput. Phys..

[16]  Tom Lyche,et al.  Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .

[17]  Charlie C. L. Wang,et al.  Non-self-overlapping Hermite interpolation mapping: a practical solution for structured quadrilateral meshing , 2005, Comput. Aided Des..

[18]  T. Hughes,et al.  Solid T-spline construction from boundary representations for genus-zero geometry , 2012 .

[19]  Bert Jüttler,et al.  Bounding the influence of domain parameterization and knot spacing on numerical stability in Isogeometric Analysis , 2014 .

[20]  Régis Duvigneau,et al.  Parameterization of computational domain in isogeometric analysis: Methods and comparison , 2011 .

[21]  H. Nguyen-Xuan,et al.  Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .

[22]  Régis Duvigneau,et al.  Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis , 2013, Comput. Aided Des..

[23]  Martin Aigner,et al.  Swept Volume Parameterization for Isogeometric Analysis , 2009, IMA Conference on the Mathematics of Surfaces.

[24]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[25]  Thomas J. R. Hughes,et al.  Volumetric T-spline construction using Boolean operations , 2014, Engineering with Computers.

[26]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[27]  Vibeke Skytt,et al.  Spline Volume Fairing , 2010, Curves and Surfaces.

[28]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[29]  Elaine Cohen,et al.  Volumetric parameterization and trivariate b-spline fitting using harmonic functions , 2008, SPM '08.

[30]  Thomas J. R. Hughes,et al.  Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology , 2012, Comput. Aided Des..

[31]  E. T. Y. Lee,et al.  Möbius reparametrizations of rational B-splines , 1991, Comput. Aided Geom. Des..

[32]  Thomas J. R. Hughes,et al.  Conformal solid T-spline construction from boundary T-spline representations , 2013 .

[33]  Yaoxin Zhang,et al.  An improved nearly-orthogonal structured mesh generation system with smoothness control functions , 2012, J. Comput. Phys..

[34]  J. M. Cascón,et al.  A new approach to solid modeling with trivariate T-splines based on mesh optimization , 2011 .

[35]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .