High-quality construction of analysis-suitable trivariate NURBS solids by reparameterization methods
暂无分享,去创建一个
André Galligo | Bernard Mourrain | Timon Rabczuk | Gang Xu | B. Mourrain | A. Galligo | T. Rabczuk | Gang Xu
[1] Timon Rabczuk,et al. Reproducing Kernel Triangular B-spline-based FEM for Solving PDEs , 2013 .
[2] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[3] Régis Duvigneau,et al. Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications , 2013, Comput. Aided Des..
[4] T. Hughes,et al. Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .
[5] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[6] Dongming Wang,et al. Improving Angular Speed Uniformity by C 1 Piecewise Reparameterization , 2012, Automated Deduction in Geometry.
[7] Vinh Phu Nguyen,et al. Isogeometric analysis suitable trivariate NURBS representation of composite panels with a new offset algorithm , 2014, Comput. Aided Des..
[8] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[9] Bernd Hamann,et al. Iso‐geometric Finite Element Analysis Based on Catmull‐Clark : ubdivision Solids , 2010, Comput. Graph. Forum.
[10] Xilu Wang,et al. An optimization approach for constructing trivariate B-spline solids , 2014, Comput. Aided Des..
[11] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[12] Gershon Elber,et al. Volumetric Boolean sum , 2012, Comput. Aided Geom. Des..
[13] Alessandro Reali,et al. Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .
[14] Yuri Bazilevs,et al. Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .
[15] Régis Duvigneau,et al. Constructing analysis-suitable parameterization of computational domain from CAD boundary by variational harmonic method , 2013, J. Comput. Phys..
[16] Tom Lyche,et al. Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .
[17] Charlie C. L. Wang,et al. Non-self-overlapping Hermite interpolation mapping: a practical solution for structured quadrilateral meshing , 2005, Comput. Aided Des..
[18] T. Hughes,et al. Solid T-spline construction from boundary representations for genus-zero geometry , 2012 .
[19] Bert Jüttler,et al. Bounding the influence of domain parameterization and knot spacing on numerical stability in Isogeometric Analysis , 2014 .
[20] Régis Duvigneau,et al. Parameterization of computational domain in isogeometric analysis: Methods and comparison , 2011 .
[21] H. Nguyen-Xuan,et al. Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .
[22] Régis Duvigneau,et al. Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis , 2013, Comput. Aided Des..
[23] Martin Aigner,et al. Swept Volume Parameterization for Isogeometric Analysis , 2009, IMA Conference on the Mathematics of Surfaces.
[24] Alessandro Reali,et al. Isogeometric Analysis of Structural Vibrations , 2006 .
[25] Thomas J. R. Hughes,et al. Volumetric T-spline construction using Boolean operations , 2014, Engineering with Computers.
[26] T. Hughes,et al. ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .
[27] Vibeke Skytt,et al. Spline Volume Fairing , 2010, Curves and Surfaces.
[28] T. Hughes,et al. Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .
[29] Elaine Cohen,et al. Volumetric parameterization and trivariate b-spline fitting using harmonic functions , 2008, SPM '08.
[30] Thomas J. R. Hughes,et al. Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology , 2012, Comput. Aided Des..
[31] E. T. Y. Lee,et al. Möbius reparametrizations of rational B-splines , 1991, Comput. Aided Geom. Des..
[32] Thomas J. R. Hughes,et al. Conformal solid T-spline construction from boundary T-spline representations , 2013 .
[33] Yaoxin Zhang,et al. An improved nearly-orthogonal structured mesh generation system with smoothness control functions , 2012, J. Comput. Phys..
[34] J. M. Cascón,et al. A new approach to solid modeling with trivariate T-splines based on mesh optimization , 2011 .
[35] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .