Multispectral image denoising by well-posed anisotropic diffusion scheme with channel coupling

A novel way to denoise multispectral images is proposed via an anisotropic diffusion based partial differential equation (PDE). A coupling term is added to the divergence term and it facilitates the modelling of interchannel relations in multidimensional image data. A total variation function is used to model the intrachannel smoothing and gives a piecewise smooth result with edge preservation. The coupling term uses weights computed from different bands of the input image and balances the interchannel information in the diffusion process. It aligns edges from different channels and stops the diffusion transfer using the weights. Well-posedness of the PDE is proved in the space of bounded variation functions. Comparison with the previous approaches is provided to demonstrate the advantages of the proposed scheme. The simulation results show that the proposed scheme effectively removes noise and preserves the main features of multispectral image data by taking channel coupling into consideration.

[1]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[2]  J. L. Webb OPERATEURS MAXIMAUX MONOTONES ET SEMI‐GROUPES DE CONTRACTIONS DANS LES ESPACES DE HILBERT , 1974 .

[3]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[4]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[6]  S. Acton,et al.  Multi-spectral anisotropic diffusion , 1997 .

[7]  Scott T. Acton,et al.  Modified mean curvature motion for multispectral anisotropic diffusion , 1998, 1998 IEEE Southwest Symposium on Image Analysis and Interpretation (Cat. No.98EX165).

[8]  Peiliang Xu,et al.  Despeckling SAR-type multiplicative noise , 1999 .

[9]  Grégoire Mercier,et al.  Nonlinear filtering of hyperspectral images with anisotropic diffusion , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[10]  Terry Caelli,et al.  Generalized Spatio-Chromatic Diffusion , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Bogdan Smolka,et al.  ON THE COMBINED FORWARD AND BACKWARD ANISOTROPIC DIFFUSION SCHEME FOR THE MULTISPECTRAL IMAGE ENHANCEMENT , 2002 .

[12]  Guo Huadong,et al.  A novel method to reduce speckle in SAR images , 2002 .

[13]  Rachid Deriche,et al.  Vector-valued image regularization with PDE's: a common framework for different applications , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[14]  Rachid Deriche,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004 .

[15]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[16]  R. Chellappa Introduction of New Editor-in-Chief , 2005 .

[17]  Rachid Deriche,et al.  Vector-valued image regularization with PDEs: a common framework for different applications , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Liangpei Zhang,et al.  Nonlinear multispectral anisotropic diffusion filters for remote sensed images based on MDL and morphology , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[19]  Konstantinos Karantzalos,et al.  Improving edge detection and watershed segmentation with anisotropic diffusion and morphological levellings , 2006 .

[20]  Julio Martín-Herrero,et al.  Anisotropic Diffusion in the Hypercube , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[21]  T. Chan,et al.  Fast dual minimization of the vectorial total variation norm and applications to color image processing , 2008 .

[22]  John R. Jensen,et al.  Object‐based change detection using correlation image analysis and image segmentation , 2008 .