Pathologic factors of brain edema in acute ischemic stroke research

[1]  D. Lougson,et al.  Acute. , 2020, The Manchester medical gazette.

[2]  S. Moon,et al.  Therapeutic effects of traditional herbal medicine on cerebral ischemia: A perspective of vascular protection , 2013, Chinese Journal of Integrative Medicine.

[3]  M. Papadopoulos,et al.  Aquaporin water channels in the nervous system , 2013, Nature Reviews Neuroscience.

[4]  T. Dalkara,et al.  Microvascular protection is essential for successful neuroprotection in stroke , 2012, Journal of neurochemistry.

[5]  Jae-Woo Park,et al.  Defatted Sesame Seed Extract Reduces Brain Oedema by Regulating Aquaporin 4 Expression in Acute Phase of Transient Focal Cerebral Ischaemia in Rat , 2012, Phytotherapy research : PTR.

[6]  H. Jang,et al.  Chlorogenic acid ameliorates brain damage and edema by inhibiting matrix metalloproteinase-2 and 9 in a rat model of focal cerebral ischemia. , 2012, European journal of pharmacology.

[7]  Jia He,et al.  Several considerations in using traditional Chinese patent medicine for cerebral infarction , 2012, Chinese Journal of Integrative Medicine.

[8]  Melissa M Schimpf Diagnosing Increased Intracranial Pressure , 2012, Journal of Trauma Nursing.

[9]  P. Fraser The role of free radical generation in increasing cerebrovascular permeability. , 2011, Free radical biology & medicine.

[10]  Bernhard Hennig,et al.  Oxidative stress and blood-brain barrier dysfunction under particular consideration of matrix metalloproteinases. , 2011, Antioxidants & redox signaling.

[11]  K. Abe,et al.  Therapeutic approaches to vascular protection in ischemic stroke. , 2011, Acta medica Okayama.

[12]  Z. Fei,et al.  Vascular endothelial growth factor in cerebral ischemia , 2011, Journal of neuroscience research.

[13]  X. Bao,et al.  Postacute ischemia vascular endothelial growth factor transfer by transferrin-targeted liposomes attenuates ischemic brain injury after experimental stroke in rats. , 2011, Human gene therapy.

[14]  G. Zoppo Acute anti‐inflammatory approaches to ischemic stroke , 2010 .

[15]  J. Montaner,et al.  Metalloproteinase and stroke infarct size: role for anti‐inflammatory treatment? , 2010, Annals of the New York Academy of Sciences.

[16]  Wenyuan Gao,et al.  Chemical study and medical application of saponins as anti-cancer agents. , 2010, Fitoterapia.

[17]  Guohong Li,et al.  Molecular insights and therapeutic targets for blood–brain barrier disruption in ischemic stroke: Critical role of matrix metalloproteinases and tissue-type plasminogen activator , 2010, Neurobiology of Disease.

[18]  Xiao-he Yu,et al.  Adenoviral vector-mediated transduction of VEGF improves neural functional recovery after hypoxia-ischemic brain damage in neonatal rats , 2010, Brain Research Bulletin.

[19]  Gary A Rosenberg,et al.  Increased intranuclear matrix metalloproteinase activity in neurons interferes with oxidative DNA repair in focal cerebral ischemia , 2010, Journal of neurochemistry.

[20]  E. Candelario-Jalil,et al.  Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia , 2009, Neuroscience.

[21]  J. Simard,et al.  Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications , 2007, The Lancet Neurology.

[22]  B. Fiebich,et al.  Post‐ischaemic treatment with the cyclooxygenase‐2 inhibitor nimesulide reduces blood–brain barrier disruption and leukocyte infiltration following transient focal cerebral ischaemia in rats , 2007, Journal of neurochemistry.

[23]  Shyam Prabhakaran,et al.  Experimental treatments for acute ischaemic stroke , 2007, The Lancet.

[24]  J. Hewett,et al.  Contributions of cyclooxygenase-2 to neuroplasticity and neuropathology of the central nervous system. , 2006, Pharmacology & therapeutics.

[25]  Zhe Chen,et al.  [Progress on research and application of traditional Chinese medicine in intervention treatment of primary liver carcinoma]. , 2006, Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi = Chinese journal of integrated traditional and Western medicine.

[26]  P. Narasimhan,et al.  Evaluating therapeutic targets for reperfusion‐related brain hemorrhage , 2006, Annals of neurology.

[27]  J. Bogousslavsky,et al.  Time course of aquaporin expression after transient focal cerebral ischemia in mice , 2006, Journal of neuroscience research.

[28]  M. Hüll,et al.  Ascorbic acid enhances the inhibitory effect of aspirin on neuronal cyclooxygenase-2-mediated prostaglandin E2 production , 2006, Journal of Neuroimmunology.

[29]  E. Uhl,et al.  Effect of P–selectin inhibition on leukocyteendothelium interaction and survival after global cerebral ischemia , 2006, Journal of Neurology.

[30]  Geoffrey T. Manley,et al.  Involvement of aquaporin-4 in astroglial cell migration and glial scar formation , 2005, Journal of Cell Science.

[31]  Jiankun Cui,et al.  A Highly Specific Inhibitor of Matrix Metalloproteinase-9 Rescues Laminin from Proteolysis and Neurons from Apoptosis in Transient Focal Cerebral Ischemia , 2005, The Journal of Neuroscience.

[32]  G. Rosenberg,et al.  Multiple roles for MMPs and TIMPs in cerebral ischemia , 2005, Glia.

[33]  B. Nico,et al.  The role of aquaporin-4 in the blood–brain barrier development and integrity: Studies in animal and cell culture models , 2004, Neuroscience.

[34]  Turgay Dalkara,et al.  Reperfusion-Induced Oxidative/Nitrative Injury to Neurovascular Unit After Focal Cerebral Ischemia , 2004, Stroke.

[35]  L. R. Howe,et al.  Extracellular Matrix-induced Cyclooxygenase-2 Regulates Macrophage Proteinase Expression* , 2004, Journal of Biological Chemistry.

[36]  P. Bracci,et al.  Matrix Metalloproteinase-9 and Myeloperoxidase Expression: Quantitative Analysis by Antigen Immunohistochemistry in a Model of Transient Focal Cerebral Ischemia , 2004, Stroke.

[37]  Andrew P Grieve,et al.  Acute Stroke Therapy by Inhibition of Neutrophils (ASTIN): An Adaptive Dose-Response Study of UK-279,276 in Acute Ischemic Stroke , 2003, Stroke.

[38]  Cenk Ayata,et al.  Ischaemic brain oedema , 2002, Journal of Clinical Neuroscience.

[39]  M. Chopp,et al.  Vascular endothelial growth factor and angiopoietins in focal cerebral ischemia. , 2002, Trends in cardiovascular medicine.

[40]  Taku Sugawara,et al.  Matrix Metalloproteinase Inhibition Prevents Oxidative Stress-Associated Blood–Brain Barrier Disruption after Transient Focal Cerebral Ischemia , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[41]  J. Arenillas,et al.  Matrix Metalloproteinase Expression After Human Cardioembolic Stroke: Temporal Profile and Relation to Neurological Impairment , 2001, Stroke.

[42]  Stanley J. Wiegand,et al.  Vascular-specific growth factors and blood vessel formation , 2000, Nature.

[43]  H. Bolay,et al.  Role of endothelial nitric oxide generation and peroxynitrite formation in reperfusion injury after focal cerebral ischemia. , 2000, Stroke.

[44]  M. Bernaudin,et al.  Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. , 2000, The American journal of pathology.

[45]  M. Ross,et al.  The Cyclooxygenase-2 Inhibitor NS-398 Ameliorates Ischemic Brain Injury in Wild-Type Mice but not in Mice with Deletion of the Inducible Nitric Oxide Synthase Gene , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[46]  M. Moskowitz,et al.  Pathobiology of ischaemic stroke: an integrated view , 1999, Trends in Neurosciences.

[47]  C. Beaulieu,et al.  Decompressive craniectomy, reperfusion, or a combination for early treatment of acute "malignant" cerebral hemispheric stroke in rats? Potential mechanisms studied by MRI. , 1999, Stroke.

[48]  E. Connolly,et al.  CD18-mediated neutrophil recruitment contributes to the pathogenesis of reperfused but not nonreperfused stroke. , 1999, Stroke.

[49]  Michael Chopp,et al.  P-selectin antibody reduces hemorrhage and infarct volume resulting from MCA occlusion in the rat , 1998, Journal of the Neurological Sciences.

[50]  C. Epstein,et al.  Reduction of CuZn-Superoxide Dismutase Activity Exacerbates Neuronal Cell Injury and Edema Formation after Transient Focal Cerebral Ischemia , 1997, The Journal of Neuroscience.

[51]  M. Ross,et al.  Cyclo-Oxygenase-2 Gene Expression in Neurons Contributes to Ischemic Brain Damage , 1997, The Journal of Neuroscience.

[52]  N. Simonian,et al.  Dynamics of polymorphonuclear leukocyte accumulation in acute cerebral infarction and their correlation with brain tissue damage. , 1996, Stroke.

[53]  P. Chan,et al.  Role of oxidants in ischemic brain damage. , 1996, Stroke.

[54]  Gary A. Rosenberg,et al.  Proteolytic Cascade Enzymes Increase in Focal Cerebral Ischemia in Rat , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[55]  Michael Chopp,et al.  Postischemic treatment (2–4 h) with anti-CD11b and anti-CD18 monoclonal antibodies are neuroprotective after transient (2 h) focal cerebral ischemia in the rat , 1995, Brain Research.

[56]  J. Grotta,et al.  Guidelines for the Management of Patients With Acute Ischemic Stroke A Statement for Healthcare Professionals , 2005 .

[57]  J. Phillis,et al.  α-Phenyl-tert-butyl-nitrone reduces cortical infarct and edema in rats subjected to focal ischemia , 1994, Brain Research.

[58]  R. Rothlein,et al.  Monoclonal Antibody to the ICAM-1 Adhesion Site Reduces Neurological Damage in a Rabbit Cerebral Embolism Stroke Model , 1993, Experimental Neurology.

[59]  T. Watanabe,et al.  Effect of MCI-186 on brain edema in rats. , 1989, Stroke.

[60]  G. Manley,et al.  Role of aquaporin-4 in cerebral edema and stroke. , 2009, Handbook of experimental pharmacology.

[61]  B. De Paepe Anti-angiogenic agents and cancer: current insights and future perspectives. , 2009, Recent patents on anti-cancer drug discovery.

[62]  G. Manley,et al.  Aquaporins: role in cerebral edema and brain water balance. , 2007, Progress in brain research.

[63]  G. Bernardi,et al.  Early upregulation of matrix metalloproteinases following reperfusion triggers neuroinflammatory mediators in brain ischemia in rat. , 2007, International review of neurobiology.

[64]  S. Libutti,et al.  Antiangiogenic therapy: targeting vascular endothelial growth factor and its receptors. , 2003, Clinical advances in hematology & oncology : H&O.

[65]  W. Dröge Free radicals in the physiological control of cell function. , 2002, Physiological reviews.

[66]  R Winn,et al.  Antibody to the alpha4 integrin decreases infarct size in transient focal cerebral ischemia in rats. , 2001, Stroke.

[67]  J. Relton,et al.  Antibody to the α4 Integrin Decreases Infarct Size in Transient Focal Cerebral Ischemia in Rats , 2001 .

[68]  E. Connolly,et al.  Cerebral protection in homozygous null ICAM-1 mice after middle cerebral artery occlusion. Role of neutrophil adhesion in the pathogenesis of stroke. , 1996, The Journal of clinical investigation.

[69]  H. Birkedal‐Hansen Proteolytic remodeling of extracellular matrix. , 1995, Current opinion in cell biology.

[70]  H. Slyter Guidelines for the management of patients with acute ischemic stroke. , 1995, Stroke.

[71]  J. Garcìa,et al.  Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). , 1994, The American journal of pathology.