Algorithmique des courbes elliptiques dans les corps finis. (Algorithms for elliptic curves over finite fields)

Cette these est consacree au calcul du nombre de points d'une courbe elliptique definie sur un corps fini. Nous etudions dans une premiere partie l'algorithme de Schoof et ses variantes dues a Atkin et a Elkies. Nous montrons ainsi en quelle mesure ces algorithmes, initialement prevus pour des corps de grande caracteristique, peuvent s'appliquer a ceux de petite caracteristique. Il s'avere que la majeure partie des idees d'Atkin et Elkies sont applicables a cette derniere famille de corps, a quelques modifications mineures pres, excepte le calcul d'isogenies entre courbes elliptiques. C'est pourquoi, nous etudions dans une deuxieme partie cinq algorithmes de calcul d'isogenies. Le premier algorithme est l'algorithme original d'Atkin pour le cas des corps de grande caracteristique. Les deuxieme et troisieme algorithme sont ceux de Couveignes pour les corps de petite caracteristique. Enfin, nous proposons a notre tour un quatrieme algorithme pour le cas specifique de la caracteristique deux et montrons dans un cinquieme algorithme comment ces idees peuvent se generaliser a des corps de caracteristique p impaire pour des isogenies de degre l borne par 2p. D'un point de vue plus pratique, nous explicitons dans une troisieme partie les methodes de programmation mises en oeuvre pour implanter les algorithmes precedents. Nous y presentons notamment ZEN, une librairie de calcul qui permet une programmation efficace en langage C de toute extension algebrique d'un anneau fini. Enfin, nous expliquons comment nous utilisons le programme obtenu pour calculer efficacement le nombre de points de courbes definies dans tout corps finis a moins de 10^100 elements. En particulier, nous montrons comment trouver ainsi des courbes elliptiques ayant de bonnes proprietes cryptographiques.

[1]  J. Voloch Explicit $p$-descent for elliptic curves in characteristic $p$ , 1990 .

[2]  Jeffrey Shallit,et al.  Analysis of a left-shift binary GCD algorithm , 1994, ANTS.

[3]  Jonathan P. Sorenson,et al.  Efficient Algorithms for Computing the Jacobi Symbol , 1996, J. Symb. Comput..

[4]  H. W. Lenstra,et al.  Factoring integers with elliptic curves , 1987 .

[5]  François Morain,et al.  Schoof's algorithm and isogeny cycles , 1994, ANTS.

[6]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[7]  Y. Tsai,et al.  On addition chains , 1992 .

[8]  René Schoof,et al.  Nonsingular plane cubic curves over finite fields , 1987, J. Comb. Theory A.

[9]  Tudor Jebelean,et al.  A generalization of the binary GCD algorithm , 1993, ISSAC '93.

[10]  N. Elkies Elliptic and modular curves over finite fields and related computational issues , 1997 .

[11]  Research Center Project-team Comete Concurrency, Mobility and Transactions in Collaboration With: Laboratoire D'informatique De L'école Polytechnique (lix) , 2022 .

[12]  Peter J. Downey,et al.  Computing Sequences with Addition Chains , 1981, SIAM J. Comput..

[13]  H. T. Kung,et al.  Fast Algorithms for Manipulating Formal Power Series , 1978, JACM.

[14]  N. Koblitz Elliptic curve cryptosystems , 1987 .

[15]  A. Menezes,et al.  Applications of Finite Fields , 1992 .

[16]  F. Mestre,et al.  Journal de Theorie des Nombres de Bordeaux 7 (1995), 219{254 , 2022 .

[17]  Srecko Brlek,et al.  Addition Chains Using Continued Fractions , 1989, J. Algorithms.

[18]  Françoise Morain Courbes elliptiques et tests de primalité , 1990 .

[19]  Graham H. Norton A Shift-Remainder GCD Algorithm , 1987, AAECC.

[20]  Victor Shoup,et al.  A New Polynomial Factorization Algorithm and its Implementation , 1995, J. Symb. Comput..

[21]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[22]  Jean-Marc Couveignes,et al.  Computing L-isogenies with the P-torsion , 1996 .

[23]  Atsuko Miyaji,et al.  Elliptic Curves over Fp Suitable for Cryptosystems , 1992, AUSCRYPT.

[24]  H. Hasse Beweis des Analogons der Riemannschen Vermutung für die Artinschen und F. K. Schmidtschen Kongruenzzetafunktionen in gewissen elliptischen Fällen. Vorläufie Mitteilung , 1933 .

[25]  Bruno Salvy,et al.  GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable , 1994, TOMS.

[26]  M. Deuring Die Typen der Multiplikatorenringe elliptischer Funktionenkörper , 1941 .

[27]  V. Müller Ein Algorithmus zur Bestimmung der Punktanzahl elliptischer Kurven über endlichen Körpern der Char , 1995 .

[28]  Burton S. Kaliski,et al.  A Pseudo-Random Bit Generator Based on Elliptic Logarithms , 1986, CRYPTO.

[29]  J. Couveignes Isogeny cycles and the Schoof-Elkies-Atkin algorithm , 1996 .

[30]  R. McEliece Finite Fields for Computer Scientists and Engineers , 1986 .

[31]  L. G. Lidia,et al.  A library for computational number theory , 1997 .

[32]  Arnold Schönhage,et al.  A Lower Bound for the Length of Addition Chains , 1975, Theor. Comput. Sci..

[33]  Andreas Bender,et al.  On the Implementation of Elliptic Curve Cryptosystems , 1989, CRYPTO.

[34]  R. Zuccherato,et al.  Counting Points on Elliptic Curves Over F2m , 1993 .

[35]  Bruno Schoeneberg,et al.  Elliptic Modular Functions , 1974 .

[36]  Everett W. Howe On the group orders of elliptic curves over finite fields , 2001, math/0110262.

[37]  Donald E. Knuth The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .

[38]  Bruce W. Char,et al.  Maple V Language Reference Manual , 1993, Springer US.

[39]  Reynald Lercier,et al.  Counting the Number of Points on Elliptic Curves over Finite Fields: Strategies and Performance , 1995, EUROCRYPT.

[40]  David Y. Y. Yun,et al.  Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants , 1980, J. Algorithms.

[41]  Kenneth Weber,et al.  The accelerated integer GCD algorithm , 1995, TOMS.

[42]  Helmut Hasse The Class Number , 1980 .

[43]  James P. Braselton,et al.  The Mathematica Handbook , 1992 .

[44]  Atsuko Miyaji,et al.  On Ordinary Elliptic Curve Cryptosystems , 1991, ASIACRYPT.

[45]  R. Schoof Elliptic Curves Over Finite Fields and the Computation of Square Roots mod p , 1985 .

[46]  Hiroshi Gunji The hasse invariant andp-division points of an elliptic curve , 1976 .

[47]  Jean Vuillemin,et al.  BigNum: A Portable and Efficient Package for Arbitrary-Precision Arithmetic , 1989 .

[48]  Reynald Lercier,et al.  Algorithms for computing isogenies between elliptic curves , 1995 .

[49]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[50]  A. Atkin,et al.  Modular Forms , 2017 .

[51]  J. Milne Elliptic Curves , 2020 .

[52]  Paul DuBois Software portability with imake , 1993 .

[53]  Jean-Pierre Serre Cours d'arithmétique , 1971 .

[54]  Alfred Menezes,et al.  Elliptic curve public key cryptosystems , 1993, The Kluwer international series in engineering and computer science.

[55]  N. Koblitz PRIMALITY OF THE NUMBER OF POINTS ON AN ELLIPTIC CURVE OVER A FINITE FIELD , 1988 .

[56]  J. Olivos,et al.  Speeding up the computations on an elliptic curve using addition-subtraction chains , 1990, RAIRO Theor. Informatics Appl..

[57]  David G. Cantor,et al.  On arithmetical algorithms over finite fields , 1989, Journal of combinatorial theory. Series A.

[58]  D. Shanks Class number, a theory of factorization, and genera , 1971 .

[59]  Alfred Menezes,et al.  Public-Key Cryptosystems with Very Small Key Length , 1992, EUROCRYPT.

[60]  Reynald Lercier,et al.  Finding Good Random Elliptic Curves for Cryptosystems Defined over F2n , 1997, EUROCRYPT.

[61]  Horst G. Zimmer,et al.  Constructing elliptic curves with given group order over large finite fields , 1994, ANTS.

[62]  Françoise Morain Calcul du nombre de points sur une courbe elliptique dans un corps fini : aspects algorithmiques , 1995 .

[63]  S. Lang,et al.  Abelian varieties over finite fields , 2005 .

[64]  Yukio Tsuruoka,et al.  Speeding up Elliptic Cryptosystems by Using a Signed Binary Window Method , 1992, CRYPTO.

[65]  J. Voloch An analogue of the Weierstrass ζ-function in characteristic p , 1997 .

[66]  Matthijs J. Coster,et al.  Addition Chain Heuristics , 1989, CRYPTO.

[67]  Florent Chabaud Recherche de performance dans l'algorithmique des corps finis. Applications a la cryptographie , 1996 .

[68]  Alfred Menezes,et al.  Reducing elliptic curve logarithms to logarithms in a finite field , 1993, IEEE Trans. Inf. Theory.

[69]  S. A. Katre,et al.  Resolution of the sign ambiguity in the determination of the cyclotomic numbers of order 4 and the corresponding Jacobsthal sum. , 1987 .

[70]  Thomas Setz Integration von Mechanismen zur Unterstützung der Fehlertoleranz in LIPS , 1996 .

[71]  D. H. Lehmer Euclid's Algorithm for Large Numbers , 1938 .

[72]  P. L. Montgomery,et al.  An FFT extension of the elliptic curve method of factorization , 1992 .

[73]  Kazuo Tanada,et al.  Design of Elliptic Curves with Controllable Lower Boundary of Extension Degree for Reduction Attacks , 1994, CRYPTO.