Insights into stress-induced variations in water chemistry

Abstract 14 Reaction path modelling, coupled with preparatory inverse modelling, was applied to test this model's ability to reproduce the 15 wide compositional range of ground waters circulating in a restricted area in Piedmont, Italy. This approach is based on the 16 assumption that the chemistry of groundwater evolves through a series of partial equilibria with secondary minerals until it reaches 17 its final composition. PHREEQC [Parkhurst, D.L., Appelo, C.A.J., 1999. User's guide to PHREEQC-A computer program for 18 speciation, reaction-path, 1D-transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources 19 Investigations Report, pp. 99-4259] and EQ3/6 [Wolery, T.J., Daveler, S.A., 1992. EQ6, A Computer Program for Reaction 20 Path Modeling of Aqueous Geochemical Systems: Theoretical Manual, User's Guide and Related Documentation (version 7.0). 21 Report UCRl-MA-110662 PT IV. Lawrence Livermore National Laboratory, Livermore, California] software packages were used

[1]  Nicolas Spycher,et al.  Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution , 1984 .

[2]  David L. Parkhurst,et al.  An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH, version 2.0 , 1994 .

[3]  K. Knauss,et al.  The dissolution kinetics of quartz as a function of pH and time at 70°C , 1988 .

[4]  R. Franco,et al.  The crustal structure of the western Po plain: reconstruction from integrated geological and seismic data , 1997 .

[5]  A. I. Pasquini,et al.  Mineral Weathering in a Semiarid Mountain River: Its assessment through PHREEQC inverse modeling , 2005 .

[6]  E. Busenberg,et al.  The dissolution kinetics of feldspars at 25°C and 1 atm CO2 partial pressure , 1976 .

[7]  C. Federico,et al.  Trace metal modeling of groundwater-gas-rock interactions in a volcanic aquifer: Mount Vesuvius, Southern Italy , 2005 .

[8]  M. Comarmond,et al.  The kinetics of chlorite dissolution , 2007 .

[9]  H. Craig,et al.  Standard for Reporting Concentrations of Deuterium and Oxygen-18 in Natural Waters , 1961, Science.

[10]  M. Miletto,et al.  A gravity model of the crust beneath the Tertiary Piemonte basin (northwestern Italy) , 1992 .

[11]  G. Ottonello,et al.  Water-rock interaction on Zabargad Island, Red Sea—A case study: II. From local equilibrium to irreversible exchanges , 1995 .

[12]  H. Helgeson Mass transfer among minerals and hydrothermal solutions. , 1979 .

[13]  P. Aagaard,et al.  Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions; I, Theoretical considerations , 1982 .

[14]  P. Glynn,et al.  Kinetic dissolution of carbonates and Mn oxides in acidic water: measurement of in situ field rates and reactive transport modeling , 2003 .

[15]  W. Dreybrodt,et al.  Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics , 2001 .

[16]  S. Inguaggiato,et al.  A simple method for the determination of dissolved gases in natural waters. An application to thermal waters from Vulcano Island. , 1998 .

[17]  H. Barnes,et al.  Geochemistry of Hydrothermal Ore Deposits , 1968 .

[18]  L. Marini,et al.  Fluid geochemistry of the Acqui Terme-Visone geothermal area (Piemonte, Italy) , 2000 .

[19]  D. L. Parkhurst,et al.  An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH , 1991 .

[20]  E. Rideal Adsorption of Gases , 1932, Nature.

[21]  L. Marini,et al.  Use of stream sediment chemistry to predict trace element chemistry of groundwater. A case study from the Bisagno Valley (Genoa, Italy) , 2001 .

[22]  R. Garrels,et al.  Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions—II. Applications , 1969 .

[23]  Douglas G. Brookins,et al.  Eh-PH diagrams for geochemistry , 1988 .

[24]  G. R. Holdren,et al.  Reaction rate-surface area relationships during the early stages of weathering—I. Initial observations , 1985 .

[25]  S. Gíslason,et al.  Meteoric water-basalt interactions. I. A laboratory study , 1987 .

[26]  L. N. Plummer,et al.  The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O , 1982 .

[27]  R. Cassinis The geophysical exploration of the upper crust from the Ligurian coast to the northern margin of the Po Valley: Problems and results , 1986 .

[28]  T. Pačes Reversible control of aqueous aluminum and silica during the irreversible evolution of natural waters , 1978 .

[29]  G. Martinelli,et al.  Geochemistry of the formation waters in the Po plain (Northern Italy): an overview. , 2000 .

[30]  R. Garrels,et al.  Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals , 1989 .

[31]  Edward Salisbury Dana,et al.  Dana's New Mineralogy: The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana , 1997 .

[32]  Patrice de Caritat,et al.  Silica activity and the smectite-illite reaction , 1994 .

[33]  L. N. Plummer,et al.  Geochemistry and the understanding of ground-water systems , 2005 .

[34]  K. Knauss,et al.  Dependence of albite dissolution kinetics on ph and time at 25°c and 70°c , 1986 .

[35]  D. Bird,et al.  Geochemical and mineralogical controls on trace element release from the Penn Mine base-metal slag dump, California , 2001 .

[36]  H. Helgeson,et al.  Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions - I. Thermodynamic relations , 1968 .

[37]  B. Ricci,et al.  Chemical and isotopic measurements of geothermal discharges in the Acqui terme district, Piedmont, Italy , 1983 .

[38]  L. Chou,et al.  Mechanism of kaolinite dissolution at room temperature and pressure Part II: kinetic study , 1999 .

[39]  Mark A. Williamson,et al.  The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation , 1994 .

[40]  L. N. Plummer,et al.  Crystal growth of calcite from calcium bicarbonate solutions at constant PCO2 and 25°C: a test of a calcite dissolution model , 1981 .

[41]  T. Pačes Steady-state kinetics and equilibrium between ground water and granitic rock , 1973 .

[42]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[43]  Eric H. Oelkers,et al.  General kinetic description of multioxide silicate mineral and glass dissolution , 2001 .

[44]  C.A.J. Appelo,et al.  User's guide to PHREEQC - a computer program for speciation,batch-reaction, one-dimensional transport, and inversegeochemical calculations. , 1999 .

[45]  D. García-Castellanos,et al.  Western Alpine back-thrusting as subsidence mechanism in the Tertiary Piedmont Basin (Western Po Plain, NW Italy) , 2005 .

[46]  D. L. Parkhurst Geochemical mole‐balance modeling with uncertain data , 1997 .

[47]  T. J. Wolery,et al.  EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations: Theoretical manual, user`s guide, and related documentation (Version 7.0); Part 3 , 1992 .

[48]  H. Eyring The Activated Complex and the Absolute Rate of Chemical Reactions. , 1935 .

[49]  J. Gat,et al.  Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area , 1970 .

[50]  T. Pačes Rate constants of dissolution derived from the measurements of mass balance in hydrological catchments , 1983 .

[51]  S. Gíslason,et al.  CHEMICAL WEATHERING OF BASALTS, SOUTHWEST ICELAND: EFFECT OF ROCK CRYSTALLINITY AND SECONDARY MINERALS ON CHEMICAL FLUXES TO THE OCEAN , 2001 .

[52]  T. J. Wolery,et al.  EQ6, a computer program for reaction path modeling of aqueous geochemical systems: Theoretical manual, user`s guide, and related documentation (Version 7.0); Part 4 , 1992 .

[53]  Fedora Quattrocchi,et al.  Thermal anomalies and fluid geochemistry framework in occurrence of the 2000-2001 Nizza Monferrate seismic sequence (northern Italy): Episodic changes in the fault zone heat flow or chemical mixing phenomena? , 2003 .

[54]  B. Wehrli,et al.  The coordination chemistry of weathering: III. A generalization on the dissolution rates of minerals , 1988 .

[55]  G. Ottonello,et al.  Water-rock interaction on Zabargad Island, Red Sea—A case study: I. Application of the concept of local equilibrium , 1995 .

[56]  Patrick V. Brady,et al.  Kinetics of quartz dissolution at low temperatures , 1990 .

[57]  M. Mancuso,et al.  The structure of the upper crust in the Alps-Apennines boundary region deduced from refraction seismic data , 1987 .

[58]  S. Brantley,et al.  Chemical weathering rates of silicate minerals , 1995 .

[59]  E. Oelkers,et al.  An experimental study of illite dissolution kinetics as a function of pH from 1.4 to 12.4 and temperature from 5 to 50°C , 2003 .

[60]  W. Dreybrodt,et al.  Dissolution rates of minerals and their relation to surface morphology , 2002 .

[61]  S. Brantley,et al.  Chemical weathering rates of pyroxenes and amphiboles , 1995 .

[62]  V. Pasquale,et al.  Radioactive heat generation and its thermal effects in the Alps–Apennines boundary zone , 2001 .

[63]  E. Oelkers,et al.  Experimental determination of the dissolution rates of calcite, aragonite, and bivalves , 2005 .

[64]  D. L. Parkhurst,et al.  User's guide to PHREEQC (Version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations , 1999 .

[65]  E. Caballero,et al.  Kinetics of montmorillonite dissolution in granitic solutions , 2001 .

[66]  E. Oelkers,et al.  The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions , 1994 .