Pharmacological modulation of the CO2/HCO3-/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase.

[1]  N. Pathak,et al.  Inhibition of Intracellular Type 10 Adenylyl Cyclase Protects Cortical Neurons Against Reperfusion-Induced Mitochondrial Injury and Apoptosis , 2018, Molecular Neurobiology.

[2]  A. Appukuttan,et al.  Soluble adenylyl cyclase: A novel player in cardiac hypertrophy induced by isoprenaline or pressure overload , 2018, PloS one.

[3]  K. Furukawa,et al.  Hypercapnia Accelerates Adipogenesis: A Novel Role of High CO2 in Exacerbating Obesity , 2017, American journal of respiratory cell and molecular biology.

[4]  L. Levin,et al.  Distinct intracellular sAC-cAMP domains regulate ER Ca2+ signaling and OXPHOS function , 2017, Journal of Cell Science.

[5]  Monica Soto-Velasquez,et al.  Identification of FDA-Approved Small Molecules Capable of Disrupting the Calmodulin-Adenylyl Cyclase 8 Interaction through Direct Binding to Calmodulin. , 2017, ACS chemical neuroscience.

[6]  L. Levin,et al.  Differential Intraocular Pressure Measurements by Tonometry and Direct Cannulation After Treatment with Soluble Adenylyl Cyclase Inhibitors. , 2017, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[7]  H. Schnittler,et al.  Salt-induced Na+/K+-ATPase-α/β expression involves soluble adenylyl cyclase in endothelial cells , 2017, Pflügers Archiv - European Journal of Physiology.

[8]  J. Deussing,et al.  cAMP-dependent cell differentiation triggered by activated CRHR1 in hippocampal neuronal cells , 2017, Scientific Reports.

[9]  G. Di Benedetto,et al.  Shaping mitochondrial dynamics: The role of cAMP signalling. , 2017, Biochemical and biophysical research communications.

[10]  Eyal Gottlieb,et al.  PDE2A2 regulates mitochondria morphology and apoptotic cell death via local modulation of cAMP/PKA signalling , 2017, eLife.

[11]  John D. Scott,et al.  Pseudoscaffolds and anchoring proteins: the difference is in the details. , 2017, Biochemical Society transactions.

[12]  Y. Ladilov,et al.  Inhibition of Intracellular Type 10 Adenylyl Cyclase Protects Cortical Neurons Against Reperfusion-Induced Mitochondrial Injury and Apoptosis , 2017, Molecular Neurobiology.

[13]  C. Dessauer,et al.  International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases , 2017, Pharmacological Reviews.

[14]  U. Beuers,et al.  The Emerging Role of Soluble Adenylyl Cyclase in Primary Biliary Cholangitis , 2017, Digestive Diseases.

[15]  Keun-Young Kim,et al.  Role of cyclic AMP in the eye with glaucoma , 2017, BMB reports.

[16]  C. Dessauer,et al.  Identification of a selective small-molecule inhibitor of type 1 adenylyl cyclase activity with analgesic properties , 2017, Science Signaling.

[17]  F. Lezoualc’h,et al.  Multifunctional Mitochondrial Epac1 Controls Myocardial Cell Death , 2017, Circulation research.

[18]  R. Neviere,et al.  Abnormal Mitochondrial cAMP/PKA Signaling Is Involved in Sepsis-Induced Mitochondrial and Myocardial Dysfunction , 2016, International journal of molecular sciences.

[19]  L. Levin,et al.  Soluble adenylyl cyclase is essential for proper lysosomal acidification , 2016, The Journal of general physiology.

[20]  A. Salicioni,et al.  Transient exposure to calcium ionophore enables in vitro fertilization in sterile mouse models , 2016, Scientific Reports.

[21]  W. Muller Transendothelial migration: unifying principles from the endothelial perspective , 2016, Immunological reviews.

[22]  J. Goldberg,et al.  Soluble Adenylyl Cyclase Is Required for Retinal Ganglion Cell and Photoreceptor Differentiation , 2016, Investigative ophthalmology & visual science.

[23]  D. Cota,et al.  A cannabinoid link between mitochondria and memory , 2016, Nature.

[24]  C. Turck,et al.  Different cAMP sources are critically involved in G protein–coupled receptor CRHR1 signaling , 2016, The Journal of cell biology.

[25]  A. Sboner,et al.  The metabolic/pH sensor soluble adenylyl cyclase is a tumor suppressor protein , 2016, Oncotarget.

[26]  C. Chu,et al.  Bisphenol A accelerates capacitation-associated protein tyrosine phosphorylation of rat sperm by activating protein kinase A. , 2016, Acta biochimica et biophysica Sinica.

[27]  C. Steegborn,et al.  Discovery of LRE1 as a specific and allosteric inhibitor of soluble adenylyl cyclase , 2016, Nature chemical biology.

[28]  Mark B. Carter,et al.  Cyclic AMP efflux inhibitors as potential therapeutic agents for leukemia , 2016, Oncotarget.

[29]  C. Paulusma,et al.  Soluble Adenylyl Cyclase Regulates Bile Salt‐Induced Apoptosis in Human Cholangiocytes , 2016, Hepatology.

[30]  R. Fischmeister,et al.  A cardiac mitochondrial cAMP signaling pathway regulates calcium accumulation, permeability transition and cell death , 2016, Cell Death and Disease.

[31]  Laureen C. Colis,et al.  Bithionol Potently Inhibits Human Soluble Adenylyl Cyclase through Binding to the Allosteric Activator Site* , 2016, The Journal of Biological Chemistry.

[32]  F. Lezoualc’h,et al.  Cyclic AMP Sensor EPAC Proteins and Their Role in Cardiovascular Function and Disease. , 2016, Circulation research.

[33]  L. Mayorga,et al.  Acrosomal Swelling Is Triggered by cAMP Downstream of the Opening of Store-Operated Calcium Channels During Acrosomal Exocytosis in Human Sperm1 , 2016, Biology of reproduction.

[34]  G. Conner,et al.  Soluble adenylyl cyclase mediates hydrogen peroxide-induced changes in epithelial barrier function , 2016, Respiratory Research.

[35]  R. Dubey,et al.  The estrogen metabolites 2-methoxyestradiol and 2-hydroxyestradiol inhibit endometriotic cell proliferation in estrogen-receptor-independent manner , 2016, Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology.

[36]  C. Dessauer,et al.  Adenylyl Cyclase 5 Regulation by Gβγ Involves Isoform-Specific Use of Multiple Interaction Sites , 2015, Molecular Pharmacology.

[37]  Yanjiao Wang,et al.  Cholecystokinin receptors regulate sperm protein tyrosine phosphorylation via uptake of HCO3-. , 2015, Reproduction.

[38]  B. Mukherjee,et al.  Role of forward‐motility‐stimulating factor as an extracellular activator of soluble adenylyl cyclase , 2015, Molecular reproduction and development.

[39]  A. Salicioni,et al.  Biphasic Role of Calcium in Mouse Sperm Capacitation Signaling Pathways , 2015, Journal of cellular physiology.

[40]  J. Shelhamer,et al.  Prostaglandin E2 Inhibits NLRP3 Inflammasome Activation through EP4 Receptor and Intracellular Cyclic AMP in Human Macrophages , 2015, The Journal of Immunology.

[41]  R. Seifert,et al.  From canonical to non-canonical cyclic nucleotides as second messengers: pharmacological implications. , 2015, Pharmacology & therapeutics.

[42]  W. Muller,et al.  Endothelial CD99 signals through soluble adenylyl cyclase and PKA to regulate leukocyte transendothelial migration , 2015, The Journal of experimental medicine.

[43]  K. Bacallao,et al.  Requirement of cAMP Signaling for Schwann Cell Differentiation Restricts the Onset of Myelination , 2015, PloS one.

[44]  L. Levin,et al.  Physiological roles of acid-base sensors. , 2015, Annual review of physiology.

[45]  G. Conner,et al.  Hydrogen peroxide stimulation of CFTR reveals an Epac‐mediated, soluble AC‐dependent cAMP amplification pathway common to GPCR signalling , 2015, British journal of pharmacology.

[46]  C. Steegborn Structure, mechanism, and regulation of soluble adenylyl cyclases - similarities and differences to transmembrane adenylyl cyclases. , 2014, Biochimica et biophysica acta.

[47]  A. Appukuttan,et al.  Inhibition of soluble adenylyl cyclase increases the radiosensitivity of prostate cancer cells. , 2014, Biochimica et biophysica acta.

[48]  A. Appukuttan,et al.  Role of soluble adenylyl cyclase in cell death and growth. , 2014, Biochimica et biophysica acta.

[49]  N. Blackstone sAC as a model for understanding the impact of endosymbiosis on cell signaling. , 2014, Biochimica et biophysica acta.

[50]  O. Chepurny,et al.  New insights concerning the molecular basis for defective glucoregulation in soluble adenylyl cyclase knockout mice. , 2014, Biochimica et biophysica acta.

[51]  J. Goldberg,et al.  The role of soluble adenylyl cyclase in neurite outgrowth. , 2014, Biochimica et biophysica acta.

[52]  Caren Waintraub,et al.  Investigation of cAMP microdomains as a path to novel cancer diagnostics. , 2014, Biochimica et biophysica acta.

[53]  M. Tresguerres sAC from aquatic organisms as a model to study the evolution of acid/base sensing. , 2014, Biochimica et biophysica acta.

[54]  H. Breitbart,et al.  Mitochondrial PKA mediates sperm motility. , 2014, Biochimica et biophysica acta.

[55]  M. Buffone,et al.  Central role of soluble adenylyl cyclase and cAMP in sperm physiology. , 2014, Biochimica et biophysica acta.

[56]  M. Salathe,et al.  Soluble adenylyl cyclase in health and disease. , 2014, Biochimica et biophysica acta.

[57]  A. Marmorstein,et al.  Soluble adenylyl cyclase in the eye. , 2014, Biochimica et biophysica acta.

[58]  G. Manfredi,et al.  Role of soluble adenylyl cyclase in mitochondria. , 2014, Biochimica et biophysica acta.

[59]  C. Steegborn,et al.  Structural analysis of human soluble adenylyl cyclase and crystal structures of its nucleotide complexes – implications for cyclase catalysis and evolution , 2014, The FEBS journal.

[60]  M. Zaccolo,et al.  cAMP signaling in subcellular compartments. , 2014, Pharmacology & therapeutics.

[61]  Matias A. Bustos,et al.  Epac, Rap and Rab3 act in concert to mobilize calcium from sperm’s acrosome during exocytosis , 2014, Cell Communication and Signaling.

[62]  Jianwei Hou,et al.  Soluble Adenylyl Cyclase Is Necessary and Sufficient to Overcome the Block of Axonal Growth by Myelin-Associated Factors , 2014, The Journal of Neuroscience.

[63]  M. K. Verma,et al.  Activation of GPR40 attenuates chronic inflammation induced impact on pancreatic β-cells health and function , 2014, BMC Cell Biology.

[64]  Jung-Chin Chang,et al.  Cyclic AMP and alkaline pH downregulate carbonic anhydrase 2 in mouse fibroblasts. , 2014, Biochimica et biophysica acta.

[65]  X. Chen,et al.  A soluble adenylyl cyclase form targets to axonemes and rescues beat regulation in soluble adenylyl cyclase knockout mice. , 2014, American journal of respiratory cell and molecular biology.

[66]  Sanjeev Kumar,et al.  Suppression of soluble adenylyl cyclase protects smooth muscle cells against oxidative stress-induced apoptosis , 2014, Apoptosis.

[67]  A. Marmorstein,et al.  Control of outflow resistance by soluble adenylyl cyclase. , 2014, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[68]  S. Brand,et al.  Soluble Adenylyl Cyclase in Vascular Endothelium: Gene Expression Control of Epithelial Sodium Channel-&agr;, Na+/K+-ATPase-&agr;/&bgr;, and Mineralocorticoid Receptor , 2014, Hypertension.

[69]  Konstantinos Lefkimmiatis cAMP signalling meets mitochondrial compartments. , 2014, Biochemical Society transactions.

[70]  K. Barott,et al.  Established and potential physiological roles of bicarbonate-sensing soluble adenylyl cyclase (sAC) in aquatic animals , 2014, Journal of Experimental Biology.

[71]  M. Weyand,et al.  Crystal structures of human soluble adenylyl cyclase reveal mechanisms of catalysis and of its activation through bicarbonate , 2014, Proceedings of the National Academy of Sciences.

[72]  M. Congreve,et al.  Crystal Structure of Human Soluble Adenylate Cyclase Reveals a Distinct, Highly Flexible Allosteric Bicarbonate Binding Pocket , 2014, ChemMedChem.

[73]  Jung-Chin Chang,et al.  Role of the bicarbonate-responsive soluble adenylyl cyclase in pH sensing and metabolic regulation , 2014, Front. Physiol..

[74]  A. Mandal,et al.  Nonpigmented ciliary epithelial cells respond to acetazolamide by a soluble adenylyl cyclase mechanism. , 2014, Investigative ophthalmology & visual science.

[75]  M. Bissell,et al.  Increased sugar uptake promotes oncogenesis via EPAC/RAP1 and O-GlcNAc pathways. , 2014, The Journal of clinical investigation.

[76]  L. Levin,et al.  Pharmacological Distinction between Soluble and Transmembrane Adenylyl Cyclases , 2013, The Journal of Pharmacology and Experimental Therapeutics.

[77]  Carmen W. Dessauer,et al.  Development of a High-Throughput Screening Paradigm for the Discovery of Small-Molecule Modulators of Adenylyl Cyclase: Identification of an Adenylyl Cyclase 2 Inhibitor , 2013, The Journal of Pharmacology and Experimental Therapeutics.

[78]  A. Salicioni,et al.  Compartmentalization of Distinct cAMP Signaling Pathways in Mammalian Sperm*♦ , 2013, The Journal of Biological Chemistry.

[79]  L. Levin,et al.  pH sensing via bicarbonate-regulated “soluble” adenylyl cyclase (sAC) , 2013, Front. Physiol..

[80]  P. Tso,et al.  CO2/HCO3−- and Calcium-regulated Soluble Adenylyl Cyclase as a Physiological ATP Sensor* , 2013, The Journal of Biological Chemistry.

[81]  Xiaoping Zhou,et al.  Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway , 2013, Autophagy.

[82]  A. Salicioni,et al.  Functional human sperm capacitation requires both bicarbonate-dependent PKA activation and down-regulation of Ser/Thr phosphatases by Src family kinases. , 2013, Molecular human reproduction.

[83]  Sanjeev Kumar,et al.  Oxysterol-induced apoptosis of smooth muscle cells is under the control of a soluble adenylyl cyclase. , 2013, Cardiovascular research.

[84]  Konstantinos Lefkimmiatis,et al.  The inner and outer compartments of mitochondria are sites of distinct cAMP/PKA signaling dynamics , 2013, The Journal of cell biology.

[85]  J. Gancedo Biological roles of cAMP: variations on a theme in the different kingdoms of life , 2013, Biological reviews of the Cambridge Philosophical Society.

[86]  Sarah L Sayner,et al.  Bicarbonate disruption of the pulmonary endothelial barrier via activation of endogenous soluble adenylyl cyclase, isoform 10. , 2013, American journal of physiology. Lung cellular and molecular physiology.

[87]  L. Levin,et al.  Neuronal expression of soluble adenylyl cyclase in the mammalian brain , 2013, Brain Research.

[88]  Zuo-min Zhou,et al.  Tripeptidyl Peptidase II Regulates Sperm Function by Modulating Intracellular Ca2+ Stores via the Ryanodine Receptor , 2013, PloS one.

[89]  T. Pozzan,et al.  Mitochondrial Ca²⁺ uptake induces cyclic AMP generation in the matrix and modulates organelle ATP levels. , 2013, Cell metabolism.

[90]  L. Levin,et al.  cAMP and mitochondria. , 2013, Physiology.

[91]  J. Sznajder,et al.  Protein kinase A-Iα regulates Na,K-ATPase endocytosis in alveolar epithelial cells exposed to high CO(2) concentrations. , 2013, American journal of respiratory cell and molecular biology.

[92]  K. Arora,et al.  Compartmentalization of cyclic nucleotide signaling: a question of when, where, and why? , 2013, Pflügers Archiv - European Journal of Physiology.

[93]  F. Dekker,et al.  Exchange Protein Directly Activated by cAMP (epac): A Multidomain cAMP Mediator in the Regulation of Diverse Biological Functions , 2013, Pharmacological Reviews.

[94]  R. Palisaar,et al.  Type 10 Soluble Adenylyl Cyclase Is Overexpressed in Prostate Carcinoma and Controls Proliferation of Prostate Cancer Cells* , 2012, The Journal of Biological Chemistry.

[95]  W. Kummer,et al.  Nicotine-induced activation of soluble adenylyl cyclase participates in ion transport regulation in mouse tracheal epithelium. , 2012, Life sciences.

[96]  R. Germain,et al.  The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP , 2012, Nature.

[97]  A. Tengholm Cyclic AMP dynamics in the pancreatic β-cell , 2012, Upsala journal of medical sciences.

[98]  Jochen Buck,et al.  Metabolic Communication between Astrocytes and Neurons via Bicarbonate-Responsive Soluble Adenylyl Cyclase , 2012, Neuron.

[99]  E. Thrower,et al.  Activation of Soluble Adenylyl Cyclase Protects against Secretagogue Stimulated Zymogen Activation in Rat Pancreaic Acinar Cells , 2012, PloS one.

[100]  G. Wennemuth,et al.  Glucose is a pH-Dependent Motor for Sperm Beat Frequency during Early Activation , 2012, PloS one.

[101]  C. Steegborn,et al.  Identification of a haem domain in human soluble adenylate cyclase , 2012, Bioscience reports.

[102]  J. Goldberg,et al.  Soluble Adenylyl Cyclase Activity Is Necessary for Retinal Ganglion Cell Survival and Axon Growth , 2012, The Journal of Neuroscience.

[103]  M. Cann,et al.  Crystal structure and regulation mechanisms of the CyaB adenylyl cyclase from the human pathogen Pseudomonas aeruginosa. , 2012, Journal of molecular biology.

[104]  L. Pott,et al.  Type 10 adenylyl cyclase mediates mitochondrial Bax translocation and apoptosis of adult rat cardiomyocytes under simulated ischaemia/reperfusion. , 2012, Cardiovascular research.

[105]  K. McDonough,et al.  The myriad roles of cyclic AMP in microbial pathogens: from signal to sword , 2011, Nature Reviews Microbiology.

[106]  N. Delamere,et al.  Mechanism of Aqueous Humor Secretion, Its Regulation and Relevance to Glaucoma , 2011 .

[107]  M. Tresguerres,et al.  Regulation of Anterior Chamber Drainage by Bicarbonate-sensitive Soluble Adenylyl Cyclase in the Ciliary Body* , 2011, The Journal of Biological Chemistry.

[108]  L. Levin,et al.  The Soluble Guanylyl Cyclase Activator YC-1 Increases Intracellular cGMP and cAMP via Independent Mechanisms in INS-1E Cells , 2011, Journal of Pharmacology and Experimental Therapeutics.

[109]  H. Breitbart,et al.  Light-mediated activation reveals a key role for protein kinase A and sarcoma protein kinase in the development of sperm hyper-activated motility. , 2011, Human reproduction.

[110]  A. Bonci,et al.  Endocytosis Promotes Rapid Dopaminergic Signaling , 2011, Neuron.

[111]  C. Steegborn,et al.  A Phosphodiesterase 2A Isoform Localized to Mitochondria Regulates Respiration* , 2011, The Journal of Biological Chemistry.

[112]  A. Tengholm,et al.  Glucose- and Hormone-Induced cAMP Oscillations in α- and β-Cells Within Intact Pancreatic Islets , 2011, Diabetes.

[113]  J. Corbin,et al.  Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. , 2011, Physiological reviews.

[114]  Clint L. Miller,et al.  Cyclic Nucleotide Phosphodiesterase 1 Regulates Lysosome-Dependent Type I Collagen Protein Degradation in Vascular Smooth Muscle Cells , 2011, Arteriosclerosis, thrombosis, and vascular biology.

[115]  Jochen Buck,et al.  Physiological Sensing of Carbon Dioxide/Bicarbonate/pH via Cyclic Nucleotide Signaling , 2011, Sensors.

[116]  J. Bonanno,et al.  Soluble adenylyl cyclase mediates bicarbonate-dependent corneal endothelial cell protection. , 2011, American journal of physiology. Cell physiology.

[117]  C. Steegborn,et al.  CO2 Acts as a Signalling Molecule in Populations of the Fungal Pathogen Candida albicans , 2010, PLoS pathogens.

[118]  M. Tresguerres,et al.  Physiological carbon dioxide, bicarbonate, and pH sensing , 2010, Pflügers Archiv - European Journal of Physiology.

[119]  M. Zaccolo,et al.  The Role of Type 4 Phosphodiesterases in Generating Microdomains of cAMP: Large Scale Stochastic Simulations , 2010, PloS one.

[120]  G. Horváth,et al.  Decreased Soluble Adenylyl Cyclase Activity in Cystic Fibrosis Is Related to Defective Apical Bicarbonate Exchange and Affects Ciliary Beat Frequency Regulation* , 2010, The Journal of Biological Chemistry.

[121]  Jin Zhang,et al.  beta-Adrenergic activation of electrogenic K+ and Cl- secretion in guinea pig distal colonic epithelium proceeds via separate cAMP signaling pathways. , 2010, American journal of physiology. Gastrointestinal and liver physiology.

[122]  L. Levin,et al.  Soluble adenylyl cyclase defines a nuclear cAMP microdomain in keratinocyte hyperproliferative skin diseases. , 2010, The Journal of investigative dermatology.

[123]  Hui Li,et al.  Vacuolar H+-ATPase apical accumulation in kidney intercalated cells is regulated by PKA and AMP-activated protein kinase. , 2010, American journal of physiology. Renal physiology.

[124]  M. Tresguerres,et al.  Modulation of NaCl absorption by [HCO(3)(-)] in the marine teleost intestine is mediated by soluble adenylyl cyclase. , 2010, American journal of physiology. Regulatory, integrative and comparative physiology.

[125]  M. Mclaughlin,et al.  cAMP stimulates apical V-ATPase accumulation, microvillar elongation, and proton extrusion in kidney collecting duct A-intercalated cells. , 2010, American journal of physiology. Renal physiology.

[126]  B. Hill,et al.  Nongenomic inhibition of coronary constriction by 17ß-estradiol, 2-hydroxyestradiol, and 2-methoxyestradiol. , 2010, Canadian journal of physiology and pharmacology.

[127]  M. Houslay Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown. , 2010, Trends in biochemical sciences.

[128]  G. Goss,et al.  Bicarbonate-sensing soluble adenylyl cyclase is an essential sensor for acid/base homeostasis , 2009, Proceedings of the National Academy of Sciences.

[129]  L. Giojalas,et al.  Molecular Mechanism for Human Sperm Chemotaxis Mediated by Progesterone , 2009, PloS one.

[130]  E. Schon,et al.  Modulation of mitochondrial protein phosphorylation by soluble adenylyl cyclase ameliorates cytochrome oxidase defects , 2009, EMBO molecular medicine.

[131]  Bin Wang,et al.  Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. , 2009, Nature chemical biology.

[132]  M. Lohse,et al.  Persistent cAMP-Signals Triggered by Internalized G-Protein–Coupled Receptors , 2009, PLoS biology.

[133]  J. Zerwekh,et al.  Inhibition of osteoclast formation and function by bicarbonate: Role of soluble adenylyl cyclase , 2009, Journal of cellular physiology.

[134]  R. Fiorotto,et al.  Diferentially expressed adenylyl cyclase isoforms mediate secretory functions in cholangiocyte subpopulation , 2009, Hepatology.

[135]  Alberto Darszon,et al.  Epac Activates the Small G Proteins Rap1 and Rab3A to Achieve Exocytosis* , 2009, The Journal of Biological Chemistry.

[136]  Sanjeev Kumar,et al.  Soluble Adenylyl Cyclase Controls Mitochondria-dependent Apoptosis in Coronary Endothelial Cells* , 2009, Journal of Biological Chemistry.

[137]  S. Sprang,et al.  Structural basis for inhibition of mammalian adenylyl cyclase by calcium. , 2009, Biochemistry.

[138]  R. Acín-Pérez,et al.  Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. , 2009, Cell metabolism.

[139]  John P. Johnson,et al.  Regulation of Epithelial Na+ Transport by Soluble Adenylyl Cyclase in Kidney Collecting Duct Cells* , 2009, Journal of Biological Chemistry.

[140]  D. Vidal-Ingigliardi,et al.  Wheel of Life, Wheel of Death: A Mechanistic Insight into Signaling by STAND Proteins. , 2009, Structure.

[141]  M. Tresguerres,et al.  Somatic ‘Soluble’ Adenylyl Cyclase Isoforms Are Unaffected in Sacytm1Lex/Sacytm1Lex ‘Knockout’ Mice , 2008, PloS one.

[142]  L. Levin,et al.  Glucose and GLP-1 Stimulate cAMP Production via Distinct Adenylyl Cyclases in INS-1E Insulinoma Cells , 2008, The Journal of general physiology.

[143]  L. Levin,et al.  “Soluble” adenylyl cyclase‐generated cyclic adenosine monophosphate promotes fast migration in PC12 cells , 2008, Journal of neuroscience research.

[144]  L. Levin,et al.  Soluble Adenylyl Cyclase Is Localized to Cilia and Contributes to Ciliary Beat Frequency Regulation via Production of cAMP , 2007, The Journal of general physiology.

[145]  Nicola Elvassore,et al.  PGE1 stimulation of HEK293 cells generates multiple contiguous domains with different [cAMP]: role of compartmentalized phosphodiesterases , 2006, The Journal of cell biology.

[146]  R. Fischmeister,et al.  Compartmentation of Cyclic Nucleotide Signaling in the Heart The Role of Cyclic Nucleotide Phosphodiesterases , 2006 .

[147]  C. Steegborn,et al.  Molecular details of cAMP generation in mammalian cells: a tale of two systems. , 2006, Journal of molecular biology.

[148]  S. Jaffrey,et al.  Soluble adenylyl cyclase is required for netrin-1 signaling in nerve growth cones , 2006, Nature Neuroscience.

[149]  B. Jaiswal,et al.  Soluble adenylyl cyclase (sAC) is indispensable for sperm function and fertilization. , 2006, Developmental biology.

[150]  L. Levin,et al.  Soluble Adenylyl Cyclase Mediates Nerve Growth Factor-induced Activation of Rap1* , 2006, Journal of Biological Chemistry.

[151]  L. Levin,et al.  Autoinhibitory regulation of soluble adenylyl cyclase , 2006, Molecular reproduction and development.

[152]  Pingbo Huang,et al.  Regulation of CFTR channels by HCO(3)--sensitive soluble adenylyl cyclase in human airway epithelial cells. , 2005, American journal of physiology. Cell physiology.

[153]  Hao Wu,et al.  A Novel Mechanism for Adenylyl Cyclase Inhibition from the Crystal Structure of Its Complex with Catechol Estrogen* , 2005, Journal of Biological Chemistry.

[154]  G. Kopf,et al.  The "soluble" adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. , 2005, Developmental cell.

[155]  B. Reed,et al.  Cloning and characterization of the human soluble adenylyl cyclase. , 2005, American journal of physiology. Cell physiology.

[156]  M. Ensslin,et al.  Mammalian fertilization , 2004, Current Biology.

[157]  R. Seifert,et al.  Differential Inhibition of Adenylyl Cyclase Isoforms and Soluble Guanylyl Cyclase by Purine and Pyrimidine Nucleotides* , 2004, Journal of Biological Chemistry.

[158]  B. Jaiswal,et al.  Mice deficient for soluble adenylyl cyclase are infertile because of a severe sperm-motility defect. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[159]  L. Levin,et al.  Bicarbonate-responsive “soluble” adenylyl cyclase defines a nuclear cAMP microdomain , 2004, The Journal of cell biology.

[160]  Dennis Brown,et al.  Bicarbonate-regulated Adenylyl Cyclase (sAC) Is a Sensor That Regulates pH-dependent V-ATPase Recycling* , 2003, Journal of Biological Chemistry.

[161]  M. Cann,et al.  A Defined Subset of Adenylyl Cyclases Is Regulated by Bicarbonate Ion* , 2003, Journal of Biological Chemistry.

[162]  B. Jaiswal,et al.  Calcium regulation of the soluble adenylyl cyclase expressed in mammalian spermatozoa , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[163]  L. Levin,et al.  Kinetic Properties of “Soluble” Adenylyl Cyclase , 2003, The Journal of Biological Chemistry.

[164]  L. Levin,et al.  Compartmentalization of bicarbonate‐sensitive adenylyl cyclase in distinct signaling microdomains , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[165]  C. S. Pillay,et al.  Endolysosomal proteolysis and its regulation. , 2002, The Biochemical journal.

[166]  Junko Kurokawa,et al.  Requirement of a Macromolecular Signaling Complex for β Adrenergic Receptor Modulation of the KCNQ1-KCNE1 Potassium Channel , 2002, Science.

[167]  B. Jaiswal,et al.  Identification and Functional Analysis of Splice Variants of the Germ Cell Soluble Adenylyl Cyclase* , 2001, The Journal of Biological Chemistry.

[168]  V Avdonin,et al.  A beta2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. , 2001, Science.

[169]  W. Boron Sodium-coupled bicarbonate transporters. , 2001, JOP : Journal of the pancreas.

[170]  S R Sprang,et al.  Molecular basis for P-site inhibition of adenylyl cyclase. , 2000, Biochemistry.

[171]  M. Cann,et al.  Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. , 2000, Science.

[172]  S R Sprang,et al.  Two-metal-Ion catalysis in adenylyl cyclase. , 1999, Science.

[173]  S. Sprang,et al.  The interactions of adenylate cyclases with P-site inhibitors. , 1999, Trends in pharmacological sciences.

[174]  M. Cann,et al.  Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[175]  S. Sprang,et al.  Identification of a Giα Binding Site on Type V Adenylyl Cyclase* , 1998, The Journal of Biological Chemistry.

[176]  T. Pawson,et al.  Signaling through scaffold, anchoring, and adaptor proteins. , 1997, Science.

[177]  S R Sprang,et al.  Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. , 1997 .

[178]  Mu-ming Poo,et al.  cAMP-Dependent Growth Cone Guidance by Netrin-1 , 1997, Neuron.

[179]  E R Kandel,et al.  Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons. , 1993, Science.

[180]  Y Dan,et al.  Asymmetric modulation of cytosolic cAMP activity induces growth cone turning , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[181]  J. Muschietti,et al.  Bicarbonate dependence of cAMP accumulation induced by phorbol esters in hamster spermatozoa. , 1990, Biochimica et biophysica acta.

[182]  T. Braun Inhibition of the Soluble Form of Testis Adenylate Cyclase by Catechol Estrogens and Other Catechols , 1990, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[183]  R. A. Johnson,et al.  Cation and structural requirements for P site-mediated inhibition of adenylate cyclase. , 1989, Molecular pharmacology.

[184]  L. Brunton,et al.  Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. , 1983, The Journal of biological chemistry.

[185]  L. Forte,et al.  Forskolin does not activate sperm adenylate cyclase. , 1983, Molecular pharmacology.

[186]  R. Dods,et al.  Mn2+-sensitive, soluble adenylate cyclase in rat testis. Differentiation from other testicular nucleotide cyclases. , 1977, Biochimica et biophysica acta.

[187]  D. Stengel,et al.  Inhibition of adenylate cyclase and ATPase activities from rat liver plasma membrane by hexachlorophene. , 1976, Biochemical pharmacology.

[188]  M. Pichichero,et al.  Cyclic Adenosine Monophosphate Stimulation of Axonal Elongation , 1972, Science.

[189]  Sarah L Sayner,et al.  Translational Research in Acute Lung Injury and Pulmonary Fibrosis Lipopolysaccharide-induced pulmonary endothelial barrier disruption and lung edema : critical role for bicarbonate stimulation of AC 10 , 2015 .

[190]  M. Mckee,et al.  Association of soluble adenylyl cyclase with the V-ATPase in renal epithelial cells. , 2008, American journal of physiology. Renal physiology.

[191]  S. Sprang,et al.  Structures, mechanism, regulation and evolution of class III nucleotidyl cyclases. , 2006, Reviews of physiology, biochemistry and pharmacology.

[192]  Hao Wu,et al.  Bicarbonate activation of adenylyl cyclase via promotion of catalytic active site closure and metal recruitment , 2005, Nature Structural &Molecular Biology.

[193]  L. Levin,et al.  Purification of soluble adenylyl cyclase. , 2002, Methods in enzymology.

[194]  L. Brunton,et al.  Compartmentation of hormone action in adult mammalian cardiomyocytes. , 1986, Advances in experimental medicine and biology.

[195]  T. Braun The effect of divalent cations on bovine spermatozoal adenylate cyclase activity. , 1975, Journal of cyclic nucleotide research.

[196]  R. Butcher,et al.  Cyclic AMP. , 1968, Annual review of biochemistry.

[197]  J. Dan The Acrosome Reaction , 1956 .