Combining classifiers for word sense disambiguation based on Dempster-Shafer theory and OWA operators

In this paper, we discuss a framework for weighted combination of classifiers for word sense disambiguation (WSD). This framework is essentially based on Dempster-Shafer theory of evidence [G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, Princeton, 1976] and ordered weighted averaging (OWA) operators [R.R. Yager, On ordered weighted averaging aggregation operators in multicriteria decision making, IEEE Transactions on Systems, Man, and Cybernetics 18 (1988) 183-190] We first determine various kinds of features which could provide complementarily linguistic information for the context, and then combine these sources of information based on Dempster's rule of combination and OWA operators for identifying the meaning of a polysemous word. We experimentally design a set of individual classifiers, each of which corresponds to a distinct representation type of context considered in the WSD literature, and then the discussed combination strategies are tested and compared on English lexical samples of Senseval-2 and Senseval-3.

[1]  Ted Pedersen,et al.  A Simple Approach to Building Ensembles of Naive Bayesian Classifiers for Word Sense Disambiguation , 2000, ANLP.

[2]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Stephan Bloehdorn,et al.  Text classification by boosting weak learners based on terms and concepts , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[4]  Lluís Màrquez i Villodre,et al.  Naive Bayes and Exemplar-based Approaches to Word Sense Disambiguation Revisited , 2000, ECAI.

[5]  A MillerGeorge,et al.  Using corpus statistics and WordNet relations for sense identification , 1998 .

[6]  Adam Kilgarriff,et al.  English Lexical Sample Task Description , 2001, *SEMEVAL.

[7]  L. Kuncheva,et al.  Combining classifiers: Soft computing solutions. , 2001 .

[8]  Eneko Agirre,et al.  Meaningful Results for Information Retrieval in the MEANING Project , 2006 .

[9]  Mohamed A. Deriche,et al.  A New Technique for Combining Multiple Classifiers using The Dempster-Shafer Theory of Evidence , 2002, J. Artif. Intell. Res..

[10]  George A. Miller,et al.  Using Corpus Statistics and WordNet Relations for Sense Identification , 1998, CL.

[11]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[12]  Akira Shimazu,et al.  An Evidential Reasoning Approach to Weighted Combination of Classifiers for Word Sense Disambiguation , 2005, MLDM.

[13]  Philip Resnik,et al.  Tagger Evaluation Given Hierarchical Tag Sets , 2000, Comput. Humanit..

[14]  Yuji Matsumoto,et al.  Trajectory Based Word Sense Disambiguation , 2004, COLING.

[15]  Akira Shimazu,et al.  Word Sense Disambiguation by Combining Classifiers with an Adaptive Selection of Context Representation , 2006 .

[16]  Mark Sanderson,et al.  Word sense disambiguation and information retrieval , 1994, SIGIR '94.

[17]  David Yarowsky,et al.  The John Hopkins SENSEVAL-2 System Descriptions , 2001, SENSEVAL@ACL.

[18]  G. Rigau,et al.  Combining Knowledge- and Corpus-based Word-Sense-Disambiguation Methods , 2005, J. Artif. Intell. Res..

[19]  Walter Daelemans,et al.  Parameter optimization for machine-learning of word sense disambiguation , 2002, Natural Language Engineering.

[20]  Adam Kilgarriff,et al.  Framework and Results for English SENSEVAL , 2000, Comput. Humanit..

[21]  Hwee Tou Ng,et al.  Integrating Multiple Knowledge Sources to Disambiguate Word Sense: An Exemplar-Based Approach , 1996, ACL.

[22]  Lluís Màrquez i Villodre,et al.  Boosting Applied toe Word Sense Disambiguation , 2000, ECML.

[23]  David Yarowsky,et al.  The Johns Hopkins SENSEVAL2 system descriptions , 2001 .

[24]  Nancy Ide,et al.  Introduction to the Special Issue on Word Sense Disambiguation: The State of the Art , 1998, Comput. Linguistics.

[25]  Lotfi A. Zadeh,et al.  A COMPUTATIONAL APPROACH TO FUZZY QUANTIFIERS IN NATURAL LANGUAGES , 1983 .

[26]  Lotfi A. Zadeh,et al.  Review of A Mathematical Theory of Evidence , 1984 .

[27]  Raymond J. Mooney,et al.  Comparative Experiments on Disambiguating Word Senses: An Illustration of the Role of Bias in Machine Learning , 1996, EMNLP.

[28]  Pedro M. Domingos Control-Sensitive Feature Selection for Lazy Learners , 1997, Artificial Intelligence Review.

[29]  Jian-Bo Yang,et al.  On the evidential reasoning algorithm for multiple attribute decision analysis under uncertainty , 2002, IEEE Trans. Syst. Man Cybern. Part A.

[30]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[31]  Janyce Wiebe,et al.  Word-Sense Disambiguation Using Decomposable Models , 1994, ACL.

[32]  F. Herrera,et al.  A linguistic decision process in group decision making , 1996 .

[33]  Alessandro Saffiotti,et al.  The Transferable Belief Model , 1991, ECSQARU.

[34]  Sankar K. Pal,et al.  Pattern Recognition: From Classical to Modern Approaches , 2001 .

[35]  Lluís Màrquez i Villodre,et al.  Boosting Applied to Word Sense Disambiguation , 2000, ArXiv.

[36]  Eneko Agirre,et al.  Word Sense Disambiguation: Algorithms and Applications , 2007 .

[37]  Ramanathan V. Guha,et al.  SemTag and seeker: bootstrapping the semantic web via automated semantic annotation , 2003, WWW '03.

[38]  David Yarowsky,et al.  Modeling Consensus: Classifier Combination for Word Sense Disambiguation , 2002, EMNLP.

[39]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[40]  Mark Stevenson,et al.  Cross-Language Information Retrieval Using EuroWordNet and Word Sense Disambiguation , 2004, ECIR.

[41]  Akira Shimazu,et al.  Combining Classifiers Based on OWA Operators with an Application to Word Sense Disambiguation , 2005, RSFDGrC.

[42]  Dan Klein,et al.  Combining Heterogeneous Classifiers for Word Sense Disambiguation , 2001, SENSEVAL@ACL.

[43]  Eneko Agirre,et al.  Word Sense Disambiguation: Algorithms and Applications (Text, Speech and Language Technology) , 2006 .

[44]  Akira Shimazu,et al.  Combining Classifiers with Multi-representation of Context in Word Sense Disambiguation , 2005, PAKDD.

[45]  Cristian Grozea,et al.  Finding optimal parameter settings for high performance word sense disambiguation , 2004 .

[46]  Adam Kilgarriff,et al.  The Senseval-3 English lexical sample task , 2004, SENSEVAL@ACL.