ESTIMATION OF HIV/AIDS PARAMETERS

Abstract This paper shows how well-established control system techniques can be introduced to formulate guidelines for clinical testing and measurement of the HIV/AIDS disease for the estimation of HIV/AIDS parameters. It is assumed that the viral load and CD4+ T cell count in plasma blood are measured. The objective is to estimate all parameters in the basic three dimensional HIV/AIDS model. For this purpose, through an observability analysis, the minimal number of measurement samples for the CD4+ T cell and the viral load counts is first obtained. The paper determines then the HIV progression stages when an estimation of all parameters is impossible. Outside these stages, the paper proposes two on-line estimation algorithms for all HIV parameters based on the well-known techniques of adaptive identifers and adaptive observers. Conditions for parameter convergence are discussed. Simulation results are demonstrated for the parameter estimation using adaptive observers.

[1]  Steven Wolinsky,et al.  Analysis of human immunodeficiency virus-infected tissues by amplification and in situ hybridization reveals latent and permissive infections at single-cell resolution. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[2]  A. Perelson,et al.  Dynamics of HIV infection of CD4+ T cells. , 1993, Mathematical biosciences.

[3]  A. Perelson,et al.  Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection , 1995, Nature.

[4]  A. Perelson,et al.  HIV-1 Dynamics in Vivo: Virion Clearance Rate, Infected Cell Life-Span, and Viral Generation Time , 1996, Science.

[5]  M. Nowak,et al.  Population Dynamics of Immune Responses to Persistent Viruses , 1996, Science.

[6]  D. Kirschner,et al.  Optimal control of the chemotherapy of HIV , 1997, Journal of mathematical biology.

[7]  R. Siliciano,et al.  Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection , 1997, Nature.

[8]  M. Nowak,et al.  Dynamic multidrug therapies for HIV: a control theoretic approach. , 2015, Journal of theoretical biology.

[9]  R. Siliciano,et al.  Viral Dynamics in HIV-1 Infection , 1998, Cell.

[10]  Alan S. Perelson,et al.  Mathematical Analysis of HIV-1 Dynamics in Vivo , 1999, SIAM Rev..

[11]  José Álvarez-Ramírez,et al.  Feedback Control of the chemotherapy of HIV , 2000, Int. J. Bifurc. Chaos.

[12]  Denise E. Kirschner,et al.  Revisiting Early Models of the host-pathogen interactions in HIV infection , 2000 .

[13]  Xiaohua Xia,et al.  Global Frequency Estimators Through Marino-Tomei Observers , 2000 .

[14]  Riccardo Marino,et al.  Global estimation of n unknown frequencies , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).