Introducing a cross-layer interpreter for multimedia streams

In the context of multimedia and real-time systems, this article introduces a generic interpreter of QoS properties (xQoS-Interpreter) for the Application Data Units (ADUs) composing standard and proprietary multimedia streams. This approach is intended to make the QoS properties of ADUs publicly available to any mechanism of the underlying communication system. The use of this information allows for cross-layer QoS optimization of the communication services taking the actual per-packet requirements of the applications into account. A case study showing how the xQoS-Interpreter is used at transport layer to seamlessly optimize the perceived QoS of an end-to-end video transmission is presented. In this scenario, the xQoS-Interpreter is used to optimize a TCP-friendly Rate Control mechanism (TFRC) over congested wireless network services in order to demonstrate the feasibility and advantages of our approach.

[1]  Mark Handley,et al.  RFC 5348: TCP Friendly Rate Control (TFRC): Protocol Specification , 2008 .

[2]  Jörg Widmer,et al.  TCP Friendly Rate Control (TFRC): Protocol Specification , 2003, RFC.

[3]  Avideh Zakhor,et al.  Rate control for streaming video over wireless , 2004, IEEE INFOCOM 2004.

[4]  Pascal Frossard,et al.  Joint source/FEC rate selection for quality-optimal MPEG-2 video delivery , 2001, IEEE Trans. Image Process..

[5]  David L. Black,et al.  An Architecture for Differentiated Service , 1998 .

[6]  Donald C. Cox,et al.  An adaptive cross-layer scheduler for improved QoS support of multiclass data services on wireless systems , 2005, IEEE Journal on Selected Areas in Communications.

[7]  Jozsef Vass,et al.  Scalable, error-resilient, and high-performance video communications in mobile wireless environments , 2001, IEEE Trans. Circuits Syst. Video Technol..

[8]  Godred Fairhurst,et al.  Link ARQ Issues for IP Traffic, IETF RFC 3366 (BCP62) , 2002 .

[9]  Thierry Turletti,et al.  Adaptive error control for packet video in the Internet , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[10]  Theodore S. Rappaport,et al.  Cross-layer design for wireless networks , 2003, IEEE Commun. Mag..

[11]  Mihaela van der Schaar,et al.  Cross-layer wireless multimedia transmission: challenges, principles, and new paradigms , 2005, IEEE Wirel. Commun..

[12]  Mohamed Naimi,et al.  Toward an improvement of H.264 video transmission over IEEE 802.11e through a cross-layer architecture , 2006, IEEE Communications Magazine.

[13]  Pamela C. Cosman,et al.  End-to-end differentiation of congestion and wireless losses , 2003, TNET.

[14]  Mark Handley,et al.  Datagram Congestion Control Protocol (DCCP) , 2006, RFC.

[15]  Henning Schulzrinne,et al.  RTP: A Transport Protocol for Real-Time Applications , 1996, RFC.

[16]  Mark Handley,et al.  RFC 4340: Datagram Congestion Control Protocol (DCCP) , 2006 .

[17]  Raouf Boutaba,et al.  Adaptive packet video streaming over IP networks: a cross-layer approach , 2005, IEEE Journal on Selected Areas in Communications.

[18]  Michael A. Ramalho,et al.  Stream Control Transmission Protocol (SCTP) Partial Reliability Extension , 2004, RFC.

[19]  I. Chlamtac,et al.  Performance analysis for IEEE 802.11e EDCF service differentiation , 2005, IEEE Transactions on Wireless Communications.

[20]  Godred Fairhurst,et al.  Advice to link designers on link Automatic Repeat reQuest (ARQ) , 2002, RFC.

[21]  David Clark,et al.  Architectural considerations for a new generation of protocols , 1990, SIGCOMM 1990.

[22]  Mosa Ali Abu-Rgheff,et al.  Cross-layer signalling for next-generation wireless systems , 2003, 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003..

[23]  Lixia Zhang,et al.  Stream Control Transmission Protocol , 2000, RFC.

[24]  Sunghyun Choi,et al.  Analysis of IEEE 802.11e for QoS support in wireless LANs , 2003, IEEE Wireless Communications.