Knowledge-Based Image Retrieval with Spatial and Temporal Constructs

A knowledge-based approach to retrieve medical images by feature and content with spatial and temporal constructs is developed. Selected objects of interest in a medical image (e.g. x-ray, MR image) are segmented, and contours are generated from these objects. Features (e.g. shape, size, texture) and content (e.g. spatial relationships among objects) are extracted and stored in a feature and content database. Knowledge about image features can be expressed as a hierarchical structure called a Type Abstraction Hierarchy (TAH). The high-level nodes in the TAH represent more general concepts than low-level nodes. Thus, traversing along TAH nodes allows approximate matching by feature and content if an exact match is not available. TAHs can be generated automatically by clustering algorithms based on feature values in the databases and hence are scalable to large collections of image features. Further, since TAHs are generated based on user classes and applications, they are context- and user-sensitive.

[1]  Ricky K. Taira,et al.  KMeD: a Knowledge-based Multimedia Medical Distributed Database System , 1995, Inf. Syst..

[2]  Rajiv Mehrotra,et al.  Similar-Shape Retrieval in Shape Data Management , 1995, Computer.

[3]  Claudio H. Sibata,et al.  Multimodality tumor delineation via fuzzy fusion and deformable modeling , 1995, Medical Imaging.

[4]  Michael F. McNitt-Gray,et al.  The evolution of an integrated timeline for oncology patient healthcare , 1998, AMIA.

[5]  Ben Shneiderman,et al.  A graphical query interface based on aggregation/generalization hierarchies , 1993, Inf. Syst..

[6]  Stanley B. Zdonik,et al.  The AQUA approach to querying lists and trees in object-oriented databases , 1995, Proceedings of the Eleventh International Conference on Data Engineering.

[7]  Freddy Fierens,et al.  Interactive outlining: an improved approach using active contours , 1993, Electronic Imaging.

[8]  Ricky K. Taira,et al.  Automatic segmentation of bones from digital hand radiographs , 1995, Medical Imaging.

[9]  William Grimson,et al.  Object recognition by computer - the role of geometric constraints , 1991 .

[10]  Alberto Del Bimbo,et al.  Symbolic Description and Visual Querying of Image Sequences Using Spatio-Temporal Logic , 1995, IEEE Trans. Knowl. Data Eng..

[11]  Ricky K. Taira,et al.  A Knowledge-Based Approach for Retrieving Images by Content , 1996, IEEE Trans. Knowl. Data Eng..

[12]  Arif Ghafoor,et al.  Interval-Based Conceptual Models for Time-Dependent Multimedia Data , 1993, IEEE Trans. Knowl. Data Eng..

[13]  T. Poggio Vision by man and machine. , 1984, Scientific American.

[14]  Christos Faloutsos,et al.  QBIC project: querying images by content, using color, texture, and shape , 1993, Electronic Imaging.

[15]  Jake K. Aggarwal,et al.  Computer analysis of dynamic scenes containing curvilinear figures , 1979, Pattern Recognit..

[16]  Martin D. Levine,et al.  Vision in Man and Machine , 1985 .

[17]  David N. Kennedy,et al.  A recurrent cooperative/competitive field for segmentation of magnetic resonance brain imagery , 1991, [Proceedings] 1991 IEEE International Joint Conference on Neural Networks.

[18]  Joel E. Richardson,et al.  Supporting Lists in a Data Model (A Timely Approach) , 1992, VLDB.

[19]  Rangasami L. Kashyap,et al.  A Visual Query Language for Graphical Interaction with Schema-Intensive Databases , 1993, IEEE Trans. Knowl. Data Eng..

[20]  John David N. Dionisio,et al.  MQuery: A Visual Query Language for Multimedia, Timeline and Simulation Data , 1996, J. Vis. Lang. Comput..

[21]  Ramesh C. Jain,et al.  A Visual Information Management System for the Interactive Retrieval of Faces , 1993, IEEE Trans. Knowl. Data Eng..

[22]  R. Michalski,et al.  Learning from Observation: Conceptual Clustering , 1983 .

[23]  Shi-Kuo Chang,et al.  An Intelligent Image Database System , 1988, IEEE Trans. Software Eng..

[24]  Frédéric Cuppens,et al.  How to recognize interesting topics to provide cooperative answering , 1989, Inf. Syst..

[25]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[26]  Arif Ghafoor,et al.  Object-oriented conceptual modeling of video data , 1995, Proceedings of the Eleventh International Conference on Data Engineering.

[27]  llsoo Ahn,et al.  Temporal Databases , 1986, Computer.

[28]  Wesley W. Chu,et al.  An error-based conceptual clustering method for providing approximate query answers , 1996, CACM.

[29]  John David N. Dionisio,et al.  Unified Data Model for Representing Multimedia, Timeline, and Simulation Data , 1998, IEEE Trans. Knowl. Data Eng..

[30]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[31]  Ricky K. Taira,et al.  Content-Based Image Retrieval using Metadata and Relaxation Techniques , 1998, Multimedia Data Management.

[32]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[33]  Ricky K. Taira,et al.  The Knowledge-Based Object-Oriented PICQUERY+ Language , 1993, IEEE Trans. Knowl. Data Eng..

[34]  Dennis Tsichritzis,et al.  Data modeling of time-based media , 1994, SIGMOD '94.

[35]  Qiming Chen,et al.  A Structured Approach for Cooperative Query Answering , 1994, IEEE Trans. Knowl. Data Eng..

[36]  David N. Kennedy,et al.  A Recurrent Cooperative/Competitive Field for Segmentation of Magnetic Brain Images , 1992, IEEE Trans. Knowl. Data Eng..

[37]  Ricky K. Taira,et al.  Knowledge-Based Image Retrieval with Spatial and Temporal Constructs , 1998, IEEE Trans. Knowl. Data Eng..

[38]  Tom Atwood,et al.  Object Database Standard: ODMG-93, Release 1.2 , 1995 .

[39]  H. K. Huang,et al.  Infrastructure design of a picture archiving and communication system. , 1992, AJR. American journal of roentgenology.