Pseudodifferential Inpainting: The Missing Link Between PDE- and RBF-Based Interpolation

Inpainting with partial differential equations (PDEs) has been used successfully to reconstruct missing parts of an image, even for sparse data. On the other hand, sparse data interpolation is a rich field of its own with different methods such as scattered data interpolation with radial basis functions (RBFs).

[1]  W. Madych,et al.  Polyharmonic cardinal splines , 1990 .

[2]  Joachim Weickert,et al.  Evaluating the true potential of diffusion-based inpainting in a compression context , 2016, Signal Process. Image Commun..

[3]  Norberto M. Grzywacz,et al.  A computational theory for the perception of coherent visual motion , 1988, Nature.

[4]  Joachim Weickert,et al.  Fachrichtung 6 . 1 – Mathematik Preprint Nr . 365 Morphological Counterparts of Linear Shift-Invariant Scale-Spaces , 2016 .

[5]  Joachim Weickert,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Edge-based Compression of Cartoon-like Images with Homogeneous Diffusion Edge-based Compression of Cartoon-like Images with Homogeneous Diffusion Edge-based Compression of Cartoon-like Images with Homogeneous Diffusion , 2022 .

[6]  Frank Neumann,et al.  Optimising Spatial and Tonal Data for Homogeneous Diffusion Inpainting , 2011, SSVM.

[7]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[8]  Jean-Michel Morel,et al.  Level lines based disocclusion , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[9]  Joachim Weickert,et al.  The Bessel Scale-Space , 2005, DSSCV.

[10]  Joachim Weickert,et al.  An Optimal Control Approach to Find Sparse Data for Laplace Interpolation , 2013, EMMCVPR.

[11]  Joachim Weickert,et al.  Discrete Green's Functions for Harmonic and Biharmonic Inpainting with Sparse Atoms , 2015, EMMCVPR.

[12]  Carola-Bibiane Schönlieb,et al.  Partial Differential Equation Methods for Image Inpainting , 2015, Cambridge monographs on applied and computational mathematics.

[13]  Jean Duchon,et al.  Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces , 1976 .

[14]  Qi Ye,et al.  Reproducing kernels of generalized Sobolev spaces via a Green function approach with distributional operators , 2011, Numerische Mathematik.

[15]  Thomas Martin Deserno,et al.  Survey: interpolation methods in medical image processing , 1999, IEEE Transactions on Medical Imaging.

[16]  Joachim Weickert,et al.  How to Choose Interpolation Data in Images , 2009, SIAM J. Appl. Math..

[17]  Armin Iske,et al.  Multiresolution Methods in Scattered Data Modelling , 2004, Lecture Notes in Computational Science and Engineering.

[18]  Luc Florack,et al.  On the Axioms of Scale Space Theory , 2004, Journal of Mathematical Imaging and Vision.

[19]  Joachim Weickert,et al.  Understanding, Optimising, and Extending Data Compression with Anisotropic Diffusion , 2014, International Journal of Computer Vision.

[20]  Ichiro Hagiwara,et al.  An approach to surface retouching and mesh smoothing , 2003, The Visual Computer.

[21]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[22]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[23]  Gregory M. Nielson,et al.  Scattered Data Interpolation and Applications: A Tutorial and Survey , 1991 .

[24]  Michael Felsberg,et al.  The Monogenic Scale-Space: A Unifying Approach to Phase-Based Image Processing in Scale-Space , 2004, Journal of Mathematical Imaging and Vision.

[25]  Václav Skala,et al.  Radial Basis Function Use for the restoration of Damaged Images , 2004, ICCVG.

[26]  Claudia Bucur,et al.  Some observations on the Green function for the ball in the fractional Laplace framework , 2015, 1502.06468.

[27]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[28]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[29]  Hans-Peter Seidel,et al.  Image Compression with Anisotropic Diffusion , 2008, Journal of Mathematical Imaging and Vision.

[30]  Yunjin Chen,et al.  A bi-level view of inpainting - based image compression , 2014, ArXiv.