Pseudodifferential Inpainting: The Missing Link Between PDE- and RBF-Based Interpolation
暂无分享,去创建一个
[1] W. Madych,et al. Polyharmonic cardinal splines , 1990 .
[2] Joachim Weickert,et al. Evaluating the true potential of diffusion-based inpainting in a compression context , 2016, Signal Process. Image Commun..
[3] Norberto M. Grzywacz,et al. A computational theory for the perception of coherent visual motion , 1988, Nature.
[4] Joachim Weickert,et al. Fachrichtung 6 . 1 – Mathematik Preprint Nr . 365 Morphological Counterparts of Linear Shift-Invariant Scale-Spaces , 2016 .
[5] Joachim Weickert,et al. Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Edge-based Compression of Cartoon-like Images with Homogeneous Diffusion Edge-based Compression of Cartoon-like Images with Homogeneous Diffusion Edge-based Compression of Cartoon-like Images with Homogeneous Diffusion , 2022 .
[6] Frank Neumann,et al. Optimising Spatial and Tonal Data for Homogeneous Diffusion Inpainting , 2011, SSVM.
[7] Michael L. Stein,et al. Interpolation of spatial data , 1999 .
[8] Jean-Michel Morel,et al. Level lines based disocclusion , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).
[9] Joachim Weickert,et al. The Bessel Scale-Space , 2005, DSSCV.
[10] Joachim Weickert,et al. An Optimal Control Approach to Find Sparse Data for Laplace Interpolation , 2013, EMMCVPR.
[11] Joachim Weickert,et al. Discrete Green's Functions for Harmonic and Biharmonic Inpainting with Sparse Atoms , 2015, EMMCVPR.
[12] Carola-Bibiane Schönlieb,et al. Partial Differential Equation Methods for Image Inpainting , 2015, Cambridge monographs on applied and computational mathematics.
[13] Jean Duchon,et al. Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces , 1976 .
[14] Qi Ye,et al. Reproducing kernels of generalized Sobolev spaces via a Green function approach with distributional operators , 2011, Numerische Mathematik.
[15] Thomas Martin Deserno,et al. Survey: interpolation methods in medical image processing , 1999, IEEE Transactions on Medical Imaging.
[16] Joachim Weickert,et al. How to Choose Interpolation Data in Images , 2009, SIAM J. Appl. Math..
[17] Armin Iske,et al. Multiresolution Methods in Scattered Data Modelling , 2004, Lecture Notes in Computational Science and Engineering.
[18] Luc Florack,et al. On the Axioms of Scale Space Theory , 2004, Journal of Mathematical Imaging and Vision.
[19] Joachim Weickert,et al. Understanding, Optimising, and Extending Data Compression with Anisotropic Diffusion , 2014, International Journal of Computer Vision.
[20] Ichiro Hagiwara,et al. An approach to surface retouching and mesh smoothing , 2003, The Visual Computer.
[21] Holger Wendland,et al. Scattered Data Approximation: Conditionally positive definite functions , 2004 .
[22] Guillermo Sapiro,et al. Image inpainting , 2000, SIGGRAPH.
[23] Gregory M. Nielson,et al. Scattered Data Interpolation and Applications: A Tutorial and Survey , 1991 .
[24] Michael Felsberg,et al. The Monogenic Scale-Space: A Unifying Approach to Phase-Based Image Processing in Scale-Space , 2004, Journal of Mathematical Imaging and Vision.
[25] Václav Skala,et al. Radial Basis Function Use for the restoration of Damaged Images , 2004, ICCVG.
[26] Claudia Bucur,et al. Some observations on the Green function for the ball in the fractional Laplace framework , 2015, 1502.06468.
[27] Martin D. Buhmann,et al. Radial Basis Functions: Theory and Implementations: Preface , 2003 .
[28] Roger Woodard,et al. Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.
[29] Hans-Peter Seidel,et al. Image Compression with Anisotropic Diffusion , 2008, Journal of Mathematical Imaging and Vision.
[30] Yunjin Chen,et al. A bi-level view of inpainting - based image compression , 2014, ArXiv.