Efficient Surface Reconstruction From Noisy Data Using Regularized Membrane Potentials

A physically motivated method for surface reconstruction is proposed that can recover smooth surfaces from noisy and sparse data sets. No orientation information is required. By a new technique based on regularized-membrane potentials the input sample points are aggregated, leading to improved noise tolerability and outlier removal, without sacrificing much with respect to detail (feature) recovery. After aggregating the sample points on a volumetric grid, a novel, iterative algorithm is used to classify grid points as exterior or interior to the surface. This algorithm relies on intrinsic properties of the smooth scalar field on the grid which emerges after the aggregation step. Second, a mesh-smoothing paradigm based on a mass-spring system is introduced. By enhancing this system with a bending-energy minimizing term we ensure that the final triangulated surface is smoother than piecewise linear. In terms of speed and flexibility, the method compares favorably with respect to previous approaches. Most parts of the method are implemented on modern graphics processing units (GPUs). Results in a wide variety of settings are presented, ranging from surface reconstruction on noise-free point clouds to grayscale image segmentation.

[1]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[2]  Carlo H. Séquin,et al.  Functional optimization for fair surface design , 1992, SIGGRAPH.

[3]  Jean-Daniel Boissonnat,et al.  Shape reconstruction from planar cross sections , 1988, Comput. Vis. Graph. Image Process..

[4]  Ichiro Hagiwara,et al.  Surface reconstruction based on compactly supported radial basis functions , 2004 .

[5]  Greg Turk,et al.  Reconstructing Surfaces by Volumetric Regularization Using Radial Basis Functions , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Jean-Daniel Boissonnat,et al.  Geometric structures for three-dimensional shape representation , 1984, TOGS.

[7]  Jean-Daniel Boissonnat,et al.  Smooth surface reconstruction via natural neighbour interpolation of distance functions , 2002, Comput. Geom..

[8]  V. Pascucci,et al.  Isosurface computation made simple: hardware acceleration, adaptive refinement and tetrahedral stripping , 2004, VISSYM'04.

[9]  Jerry L. Prince,et al.  Snakes, shapes, and gradient vector flow , 1998, IEEE Trans. Image Process..

[10]  Wen-Liang Hwang,et al.  Shape from texture: estimation of planar surface orientation through the ridge surfaces of continuous wavelet transform , 1998, IEEE Trans. Image Process..

[11]  Jean-Daniel Boissonnat,et al.  Smooth surface reconstruction via natural neighbour interpolation of distance functions , 2000, SCG '00.

[12]  Brian D. Rigling,et al.  Three-dimensional surface reconstruction from multistatic SAR images , 2005, IEEE Transactions on Image Processing.

[13]  Michael H. F. Wilkinson,et al.  CPM: a deformable model for shape recovery and segmentation based on charged particles , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  S. Osher,et al.  Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations , 2004 .

[15]  Hans-Peter Seidel,et al.  A multi-scale approach to 3D scattered data interpolation with compactly supported basis functions , 2003, 2003 Shape Modeling International..

[16]  Eitan Grinspun,et al.  Sparse matrix solvers on the GPU: conjugate gradients and multigrid , 2003, SIGGRAPH Courses.

[17]  Olivier D. Faugeras,et al.  Variational principles, surface evolution, PDEs, level set methods, and the stereo problem , 1998, IEEE Trans. Image Process..

[18]  Xue-Cheng Tai,et al.  Noise removal using smoothed normals and surface fitting , 2004, IEEE Transactions on Image Processing.

[19]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[20]  Hans-Peter Seidel,et al.  Multi-level partition of unity implicits , 2005, SIGGRAPH Courses.

[21]  Martin Rumpf,et al.  Processing textured surfaces via anisotropic geometric diffusion , 2004, IEEE Transactions on Image Processing.

[22]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[23]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[25]  Richard K. Beatson,et al.  Smooth surface reconstruction from noisy range data , 2003, GRAPHITE '03.

[26]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[27]  Gérard G. Medioni,et al.  Inference of Integrated Surface, Curve, and Junction Descriptions From Sparse 3D Data , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  James F. O'Brien,et al.  Spectral surface reconstruction from noisy point clouds , 2004, SGP '04.

[29]  Gabriel Taubin,et al.  The ball-pivoting algorithm for surface reconstruction , 1999, IEEE Transactions on Visualization and Computer Graphics.

[30]  Frédo Durand,et al.  Non-iterative, feature-preserving mesh smoothing , 2003, ACM Trans. Graph..

[31]  Hans-Peter Seidel,et al.  Multi-level partition of unity implicits , 2003, ACM Trans. Graph..

[32]  Mark A. Ganter,et al.  Implicit reconstruction of solids from cloud point sets , 1995, Symposium on Solid Modeling and Applications.

[33]  Jules Bloomenthal,et al.  An Implicit Surface Polygonizer , 1994, Graphics Gems.

[34]  J. Christiansen Numerical Simulation of Hydrodynamics by the Method of Point Vortices , 1997 .

[35]  S. Osher,et al.  Fast surface reconstruction using the level set method , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[36]  Gary A. Atkinson,et al.  Recovery of surface orientation from diffuse polarization , 2006, IEEE Transactions on Image Processing.

[37]  R. Haberman Elementary Applied Partial Differential Equations With Fourier Series and Boundary Value Problems , 1983 .

[38]  Kalpathi R. Subramanian,et al.  Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions , 2001, Proceedings International Conference on Shape Modeling and Applications.

[39]  Marshall W. Bern,et al.  A new Voronoi-based surface reconstruction algorithm , 1998, SIGGRAPH.

[40]  Valerio Pascucci Isosurface Computation Made Simple , 2004, VisSym.

[41]  O. Faugeras,et al.  Variational principles, surface evolution, PDE's, level set methods and the stereo problem , 1998, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[42]  Jos B. T. M. Roerdink,et al.  Efficient Surface Reconstruction from Noisy Data using Regularized Membrane Potentials , 2006, EuroVis.

[43]  GrinspunEitan,et al.  Sparse matrix solvers on the GPU , 2003 .

[44]  Paul Ning,et al.  An evaluation of implicit surface tilers , 1993, IEEE Computer Graphics and Applications.

[45]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[46]  Gary E. Ford,et al.  Mean curvature evolution and surface area scaling in image filtering , 1997, IEEE Trans. Image Process..

[47]  David Eppstein,et al.  The Crust and the beta-Skeleton: Combinatorial Curve Reconstruction , 1998, Graph. Model. Image Process..

[48]  James F. O'Brien,et al.  Variational Implicit Surfaces , 1999 .

[49]  Edwin R. Hancock,et al.  A graph-spectral approach to shape-from-shading , 2002, IEEE Transactions on Image Processing.

[50]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[51]  Gabriel Taubin,et al.  Estimating the tensor of curvature of a surface from a polyhedral approximation , 1995, Proceedings of IEEE International Conference on Computer Vision.

[52]  Anselmo Lastra,et al.  Physically-based visual simulation on graphics hardware , 2002, HWWS '02.

[53]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[54]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[55]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[56]  Richard Szeliski,et al.  Stereo Matching with Nonlinear Diffusion , 1998, International Journal of Computer Vision.

[57]  G.E. Ford,et al.  Mean curvature evolution and surface area scaling in image filtering , 1994, Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers.

[58]  Tardi Tjahjadi,et al.  Local Hull-Based Surface Construction of Volumetric Data From Silhouettes , 2008, IEEE Transactions on Image Processing.

[59]  Chandrajit L. Bajaj,et al.  Automatic reconstruction of surfaces and scalar fields from 3D scans , 1995, SIGGRAPH.

[60]  Demetri Terzopoulos,et al.  Adaptive meshes and shells: irregular triangulation, discontinuities, and hierarchical subdivision , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.